[1]
R.Z. Valiev, I.V. Alexandrov, Nanostructured Materials Produced by Severe Plastic Deformation, Logos, Moscow, (2000).
Google Scholar
[2]
Yu.R. Kolobov, R.Z. Valiev, G.P. Grabovetskaya, et al., Gran-Boundary Diffusion and Properties of Nanostructured Materials, Nauka, Novosibirsk, (2001).
Google Scholar
[3]
E.F. Dudarev, Yu.R. Kolobov, T.G. Langdon, G.P. Pochivalov, E.V. Naidenkin, Superplasticity and true grain-boundary sliding in Al-Mg-Li alloys produced by equal-channel angular pressing, Russian Metallurgy (Metally), 2 (2004) 116–122.
Google Scholar
[4]
Yu.R. Kolobov, E.V. Naidenkin, E.F. Dudarev, et al., The effect of severe plastic deformation on the structure and mechanical properties of Al-Mg-Li Alloys, Russian Physics Journal, 5 (2002) 453-457.
Google Scholar
[5]
E.V. Naidenkin, E.F. Dudarev, Yu.R. Kolobov, G.P. Bakach, T.G. Langdon, The effect of equal-channel angular pressing on structure-phase changes and superplastic properties of Al-Mg-Li alloy, Materials Science Forum, Vols. 503–504 (2006) 983–988.
Google Scholar
[6]
N. Gao, Applications of differential scanning calorimetry on materials subjected by severe plastic deformation, Materials Science Forum, Vols. 584–586 (2008) 255–261.
DOI: 10.4028/www.scientific.net/msf.584-586.255
Google Scholar
[7]
J.W. Zhang, M.J. Starink, N. Gao, W.L. Zhou, Influence of strain reversals during high pressure torsion process on strengthening in Al-Cu-Mg(Li) alloy, Materials Science Forum, Vols. 667–669 (2011) 809–814.
DOI: 10.4028/www.scientific.net/msf.667-669.809
Google Scholar
[8]
G. Petzow, G. Effenberg (Eds), Ternary Alloys: a Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams, MSI, Stuttgart, (1999).
DOI: 10.1002/bbpc.19930970429
Google Scholar
[9]
I.N. Fridlyander, V.S. Sandler, T.I. Nikol'skaya, Specific features of structure and properties of 1420 aluminum alloy, Met. Sci. Heat Treat., 7 (1983) 495–498.
DOI: 10.1007/bf00741936
Google Scholar
[10]
L.K. Savitskaya, X-ray Methods, Tutorial, TSU, Tomsk, (2003).
Google Scholar
[11]
W. Gasior, Z. Moser, Chemical diffusion coefficients in solid Al–Li alloys at low Li concentrations, Scand. J. Metal., 6 (2002) 353–358.
DOI: 10.1034/j.1600-0692.2002.00465.x
Google Scholar
[12]
S.J. Rothman, N.L. Peterson, L.J. Nowicki, L.C. Robinson, Tracer diffusion of magnesium in aluminum single crystals, Phys. Stat. Sol. (B), Vol. 63, No. 1 (1974) K29–K33.
DOI: 10.1002/pssb.2220630151
Google Scholar
[13]
N.P. Lyakisheva (Ed. ), Phasing Diagrams of Double Metal Systems, Reference Book in 3 vols., Mashinostroenie, Moscow, (1996).
Google Scholar
[14]
I.N. Fridlyander, A.G. Bratukhin, V.G. Davydov, Aluminum alloys for welded aerocraft structures, Avtomatich. Svarka, 6 (1990) 28.
Google Scholar
[15]
S.C. Wang, M.J. Starink, Two types of S phase precipitates in Al-Cu-Mg alloys, Acta Mater., Vol. 55, No. 3 (2007) 933–941.
DOI: 10.1016/j.actamat.2006.09.015
Google Scholar
[16]
I.N. Fridlyander, L.B. Khokhlatova, N.I. Kolobnev, et al., Thermally stable aluminum-lithium alloy 1424 for application in welded fuselage, Met. Sci. Heat Treat., Vol. 44, Nos. 1–2 (2002) 3–8.
Google Scholar
[17]
G.V. Samsonov (Ed. ), Handbook of the Physicochemical Properties of the Elements, IFI-Plenum, New York, (1968).
Google Scholar