Determination of the Optimal Operation Mode of the Platinum Dehydrogenation Catalysts

Article Preview

Abstract:

The main results of thermodynamic analysis and mathematical simulation of the deactivation of a platinum dehydrogenation catalyst by coke-generating compounds are presented. Developed model allows calculating the optimal flow rate of water fed to the reactor to maintain the conditions of thermodynamic equilibrium of the coke formation reaction and oxidation of intermediate condensation products with water. A comparative evaluation of different raw cycles of platinum-dehydrogenation catalysts is presented and shown to cause reduced production of the desired product was the change the composition of the feedstock.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-31

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. A. Buyanov, Catalyst Coking (Nauka, Novosibirsk, 1983) [in Russian].

Google Scholar

[2] Songbo He, Chenglin Sun, Xu Yang et al., Chemical Engineering J. (October) (2010) 389- 394.

Google Scholar

[3] L. Alexis, R.G. Tailleur, Fuel J. (July) (2012) 49-60.

Google Scholar

[4] A. Lira, R.G. Tailleur, Fuel, 97 (2012) 49–60.

Google Scholar

[5] D. Sanfilippo , I. Miracca, Catalysis Today, 111 (2006) 133–139.

Google Scholar

[6] S.A. Bocanegra, P.D. Zgolicz, O.A. Scelza et al., Catalysis Communications J. (May) (2009) 1463-1466.

Google Scholar

[7] A. Farjoo, F. Khorasheh, S. Niknaddaf, M. Soltani, Scientia Iranica, C (2011) 18 (3), 458–464.

DOI: 10.1016/j.scient.2011.05.009

Google Scholar

[8] I.O. Dolganova, I.M. Dolganov, E.D. Ivanchina, E.N. Ivashkina, Petroleum & Coal, 53 (4) (2011) 244-250.

Google Scholar

[9] S.A. Bocanegra, P.D. Zgolicz, O.A. Scelza et al., Catalysis Communications J. (May) (2009) 1463-1466.

Google Scholar

[10] M.S. Gyngazova, A.V. Kravtsov, E.D. Ivanchina, Chemical Engineering J. (2011) 134-143.

Google Scholar

[11] E.N. Ivashkina, E.M. Youriev, E.D. Ivanchina, A.V. Kravtsov, E.V. Frantsina, R.V. Romanovskiy, Catalysis in Industry, V. 2 (2) (2010) 137–144.

DOI: 10.1134/s207005041002008x

Google Scholar

[12] S. He, C. Sun, X. Yang et al., Chemical Engineering J. (October) (2010) 389-394.

Google Scholar

[13] E. V. Frantsina, Yu. I. Afanas'eva, E. N. Ivashkina, and E. D. Ivanchina, Izv. Tomsk. Politekh. Univ., Khim. 318 (3), 80 (2011).

Google Scholar

[14] T. Benikhlef, D. Benazzouz, S. Adjerid, K. Lebecki, Journal of Loss Prevention in the Process Industries, 25 (2012) 494–504.

DOI: 10.1016/j.jlp.2011.12.006

Google Scholar

[15] J. McGregor, Z. Huang, Journal of caralysis, V. 269 (2) (2010) 329–339.

Google Scholar

[16] Y. Zhang, Y. Zhou, L. Wan, M. Xue, Y. Duan, X. Liu, Fuel Processing Technology, 92 (2011) 1632–1638.

Google Scholar

[17] C. Carnevillier, F. Epron, P. Marecot, Appl. Catal. A 275 (2004) 25.

Google Scholar

[18] A. V. Kravtsov, E. D. Ivanchina, E. N. Ivashkina, E. V. Frantsina, S. V. Kiseleva, and R. V. Romanovskii published in Neftekhimiya, 2013, Vol. 53, No. 4, p.302–311.

Google Scholar

[19] V. Yu. Buz'ko, I. V. Sukhno, V. T. Panyushkin, and D. N. Ramazanova, Zh. Strukt. Khim. 46, 618 (2005).

Google Scholar

[20] R.G. Mortimer, Mathematics for Physical Chemistry,  Elsevier (2010).

Google Scholar

[21] A. G. Stromberg and D. P. Semchenko, Physical Chemistry (Vysshaya Shkola, Moscow, 1988) [in Russian].

Google Scholar