[1]
V.I. Boiko, A.N. Valyaev, A.D. Pogrebnyak, Metal modification by high-power pulsed particle beams, Phys. Usp. 42 (1999) 1139-1166.
DOI: 10.1070/pu1999v042n11abeh000471
Google Scholar
[2]
V. I. Boyko, V. A. Skvortsov, V. E. Fortov, and I. V. Shamanin, The Interaction of Pulsed Charged-Particle Beams with a Substance [in Russian], Fizmatlit, Moscow, (2003).
Google Scholar
[3]
A. Tseng, Recent developments in micromilling using focused ion beam technology, J. Micromech. Microeng. 14 (2004) R15-R34.
DOI: 10.1088/0960-1317/14/4/r01
Google Scholar
[4]
O.M. Stepanova, V.P. Krivobokov, The energy balance of the charged particle beam–target, system at erosion of the metal surface, Izvestiya vuzov. Fizika 11/3 (2012) 228–231.
Google Scholar
[5]
O.M. Stepanova, and V.P. Krivobokov, Erosion of solid surface under irradiation by high-power submicrosecond ion beams, Bulletin of the Russian Academy of Sciences: Physics 74 (2010) 122–125.
DOI: 10.3103/s106287381002005x
Google Scholar
[6]
A.E. Mayer, A.P. Yalovets, Mechanical stresses in an irradiated target with a disturbed surface, Technical Physics 51 (2006) 459-465.
DOI: 10.1134/s1063784206040104
Google Scholar
[7]
Bleikher G.A., Krivobokov V.P., Pashchenko O.V. Heat-Mass Transfer in Solid under High-Power Charged Particle Beam [in Russian], Nauka, Novosibirsk, (1999).
Google Scholar
[8]
H.A. Davis, G.P. Johnston, J.C. Olson, D.J. Rej, W.J. Waganaar et al., Characterization and modeling of the ablation plumes formed by intense-pulsed ion beam impact on solid targets, J. Appl. Phys. 85 (1999) 713-721.
DOI: 10.1063/1.369151
Google Scholar
[9]
A. Suutala, Focused ion beam technique in nanofabrication, The Meeting of National Graduate School in Nanoscience 2009, information on https: /www. jyu. fi/science/muut_yksikot/nsc/en/studies/ngs/course/meeting09.
Google Scholar
[10]
V. V. Gann and O. V. Yudin, Questions of Atomic Science and Technology. Series: Physics of Radiation Damage and radiation materials Science [in Russian], 1 (9) (1979) 37 – 42.
Google Scholar
[11]
J. Linhard, M. Scharff, H.E. Schiott, Range concepts and heavy ion range, Mat. Fys. Medd. Dan. Vid. Selsk. 33 (1963) 33 (14) 1-42.
Google Scholar
[12]
O. Ertl, L. Filipovich, S. Selberherr, Three-dimensional simulation of focused ion beam processing using the level set method, International Conference on Simulation of Semiconductor Processes and Devices (SISPAD 2010), Bologna, 03-B. 2 (2010).
DOI: 10.1109/sispad.2010.5604573
Google Scholar
[13]
A.F. Burenkov, F.F. Komarov, M.A. Kumahov, and M.M. Temkin, Tables of ion implantation spatial distributions, Gordon and Breach, New York-London-Paris, (1986).
Google Scholar
[14]
G. Falcone, Sputtering transport theory, Physical Review B 38 (1988) 6398-6401.
Google Scholar
[15]
. P. Sigmund, Theory of sputtering I. Sputtering yield of amorphous and polycristalline taregets, Physical Review 184 (1969) 383-416.
DOI: 10.1103/physrev.184.383
Google Scholar
[16]
Y. Yamamura, N. Matsunami, and N. Itoh, Theoretical studies on an empirical formula for sputtering yield at normal incidence, Radiation Effects 71 (1983) 65-86.
DOI: 10.1080/00337578308218604
Google Scholar
[17]
F.F. Komarov, Ion beam and photon processing of materials [in Russian], Study guide for students of Higher Schools on subject Physical Electronics, Belgosunirsitet, Minsk, 1998 (http: /www. rfe. by/media/kafedry/kaf3/publication/Ion-foton-obrabotka-mat. pdf).
Google Scholar
[18]
A simple sputter yield calculator by Michael Schmid. (http: /www. iap. tuwien. ac. at/www/surface/sputteryield).
Google Scholar