Stability of Gold Nanoparticles Functionalized with Aminoacids

Article Preview

Abstract:

While bio(organic-inorganic) compatibility and absence of cytotoxicity are crucial to create a successful nanocarrier for applications in biosensing and drug delivery, the study of its stability before commercialization is quite important. In the present work, the stability of gold nanoparticles (AuNPs) functionalized with L-Cysteine (Cys) and Cysteine-Glycine (Cys-Gly) was studied. The AuNPs surface modification with Cys and CysGly was performed to improve their biocompatibility and, after that, the stability of capped AuNPs was investigated. The synthetized AuNPs using 10 mM of cysteine and 20 mM of Cys demonstrated stability after 1 month of storage, while all other concentration ratios resulted in the formation of chain-like conglomerates. For AuNP capped with CysGly all modifier concentrations led to stable samples within 1 month of storage.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

253-258

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Andrea Majzik, et al., Gold Bulletin Volume 42 No 2 (2009).

Google Scholar

[2] Silke Krol et al., Nano Lett., 2006, 6 (9), p.1933–(1939).

Google Scholar

[3] M.C. Ramirez-Camacho, I. Tusovskaya, A. Susarrey-Arce, 4, A. N. Pestryakov, N. Bogdanchikova, Advanced Materials Research, 872 (2014) 94-105.

DOI: 10.4028/www.scientific.net/amr.880.253

Google Scholar

[4] OV. Salata, Journal of Nanobiotechnology, 2 (2004) 1-6.

Google Scholar

[5] M. Thomas, A. Klibanov, Proc. Natl. Acad. Sci. USA 100 (2003) 9138-9143.

Google Scholar

[6] Thi Ha Lien Nghiem1, Thi Huyen La, Xuan Hoa Vu, et. al, Adv. Nat. Sci.: Nanosci. Nanotechnol. 1 (2010) 025009 (5pp).

Google Scholar

[7] V. A. Sinani, D. S. Koktysh,B. -G. Yun, R. L. Matts, T. C. Pappas, M. Motamedi, S. N. Thomas, N. A. Kotov, Nano Lett. 3 (9) (2003) 1177-1182.

DOI: 10.1021/nl0255045

Google Scholar

[8] Y. Zhang, N. Kohler, M. Zhang, Biomaterials 23 (2002) 1553–1561.

Google Scholar

[9] Bin Kang, Megan A. Mackey, Mostafa A. El-Sayed, J. Am. Chem. Soc., 132 (2010), 1517–1519.

Google Scholar

[10] Po C. Chen, Sandra C. Mwakwari, Adegboyega K. Oyelere, Nanotechnology, Science and Applications, 1 (2008) 45-66.

Google Scholar

[11] Yu Pan et. a., Small, 2007, 3, No. 11, 1941 – (1949).

Google Scholar

[12] Aurora Mocanu, Ileana Cernica, Gheorghe Tomoaia, Liviu-Dorel Bobos, Ossi Horovitz, Maria Tomoaia-Cotisel, Colloids and Surfaces A: Physicochem. Eng. Aspects, 338 (2009) 93–101.

DOI: 10.1016/j.colsurfa.2008.12.041

Google Scholar

[13] G. Sonavane, K. Tomoda, K. Makino, Colloids Surf. B, 66 (2008) 274–280.

Google Scholar

[14] E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, M. D. Wyatt, Small, 1 (2005) 325–327.

Google Scholar

[15] I. Willner, E. Katz, B. Willner, R. Blonder, V. Heleg-Shabtai and A.F. Bückmann, Biosens. Bioelectron., 12 (1997) 337–356.

DOI: 10.1016/s0956-5663(96)00065-6

Google Scholar

[16] P. Tengvall, M. Lestelius, B. Liedberg and I. Lundstroem, Langmuir, 8 (1992) 1236–1238.

DOI: 10.1021/la00041a001

Google Scholar

[17] Hui-An Weng, Ching-Chou Wu, Chun-Cheng Chen, Chia-Che Ho, Shinn-Jyh Ding, Journal of Materials Science: Materials in Medicine, 21 (5) (2010) 1511-1519.

Google Scholar

[18] C. M. Goodman, C. D. McCusker, T. Yilmaz, V. M. Rotello, Bioconjugate Chem., 15 (2004) 897–900.

Google Scholar

[19] Yu. Petrov, Clusters and small particles, Moscow, Nauka (1982) 298.

Google Scholar

[20] Aurora Mocanua, Ileana Cernicab, Gheorghe Tomoaiac, Liviu-Dorel Bobosa, Ossi Horovitz, Maria Tomoaia-Cotisel, Colloids and Surfaces A: Physicochem. Eng. Aspects 338 (2009) 93.

Google Scholar