[1]
H. Bhatt, Trivalent Chromium Conversion Coating for Corrosion Protection of Aluminum Surface, (2009).
Google Scholar
[2]
Z. Zeng, A. Liang, J. Zhang, Electrochemical corrosion behavior of chromium–phosphorus coatings electrodeposited from trivalent chromium baths, Electrochimica Acta, 53 (2008) 7344-7349.
DOI: 10.1016/j.electacta.2008.03.081
Google Scholar
[3]
W. -K. Chen, C. -Y. Bai, C. -M. Liu, C. -S. Lin, M. -D. Ger, The effect of chromic sulfate concentration and immersion time on the structures and anticorrosive performance of the Cr (III) conversion coatings on aluminum alloys, Applied Surface Science, 256 (2010).
DOI: 10.1016/j.apsusc.2010.03.003
Google Scholar
[4]
P. Wang, X. Dong, D.W. Schaefer, Structure and water-barrier properties of vanadate-based corrosion inhibitor films, Corrosion Science, 52 (2010) 943-949.
DOI: 10.1016/j.corsci.2009.11.017
Google Scholar
[5]
T. PENG, R. MAN, Rare earth and silane as chromate replacers for corrosion protection on galvanized steel, Journal of Rare Earths, 27 (2009) 159-163.
DOI: 10.1016/s1002-0721(08)60212-4
Google Scholar
[6]
P. Podsiadlo, B.S. Shim, N.A. Kotov, Polymer/clay and polymer/carbon nanotube hybrid organic–inorganic multilayered composites made by sequential layering of nanometer scale films, Coordination Chemistry Reviews, 253 (2009) 2835-2851.
DOI: 10.1016/j.ccr.2009.09.004
Google Scholar
[7]
L. Sziráki, E. Kuzmann, K. Papp, C.U. Chisholm, M.R. El-Sharif, K. Havancsák, Electrochemical behaviour of amorphous electrodeposited chromium coatings, Materials Chemistry and Physics, 133 (2012) 1092-1100.
DOI: 10.1016/j.matchemphys.2012.02.021
Google Scholar
[8]
W. Chunyu, Z. Qiang, Z. Ji, W. Gaohui, Study on Anticorrosive Cerium Conversion Coating of Cf/6061Al Composite Surface, Journal of Rare Earths, 24 (2006) 64-67.
DOI: 10.1016/s1002-0721(07)60324-x
Google Scholar
[9]
G. Kong, L. Liu, J. Lu, C. Che, Z. Zhong, Study on lanthanum salt conversion coating modified with citric acid on hot dip galvanized steel, Journal of Rare Earths, 28 (2010) 461-465.
DOI: 10.1016/s1002-0721(09)60134-4
Google Scholar
[10]
D. -c. Chen, J. -f. Wu, Y. -q. Liang, S. -l. Ye, W. -f. Li, Preparation of cerium oxide based environment-friendly chemical conversion coating on magnesium alloy with additives, Transactions of Nonferrous Metals Society of China, 21 (2011).
DOI: 10.1016/s1003-6326(11)60948-5
Google Scholar
[11]
Y. -T. Tsai, K. -H. Hou, C. -Y. Bai, J. -L. Lee, M. -D. Ger, The influence on immersion time of titanium conversion coatings on electrogalvanized steel, Thin Solid Films, 518 (2010) 7541-7544.
DOI: 10.1016/j.tsf.2010.05.042
Google Scholar
[12]
M. -r. Yuan, J. -t. Lu, G. Kong, C. -s. Che, Self healing ability of silicate conversion coatings on hot dip galvanized steels, Surface and Coatings Technology, 205 (2011) 4507-4513.
DOI: 10.1016/j.surfcoat.2011.03.088
Google Scholar
[13]
Y. Kobayashi, Y. Fujiwara, Effect of SO42− on the corrosion behavior of cerium-based conversion coatings on galvanized steel, Electrochimica Acta, 51 (2006) 4236-4242.
DOI: 10.1016/j.electacta.2005.11.043
Google Scholar
[14]
G. Kong, L. Lingyan, J. Lu, C. Che, Z. Zhong, Corrosion behavior of lanthanum-based conversion coating modified with citric acid on hot dip galvanized steel in aerated 1  M NaCl solution, Corrosion Science, 53 (2011) 1621-1626.
DOI: 10.1016/j.corsci.2011.01.038
Google Scholar
[15]
A.L. Rudd, C.B. Breslin, F. Mansfeld, The corrosion protection afforded by rare earth conversion coatings applied to magnesium, Corrosion Science, 42 (2000) 275-288.
DOI: 10.1016/s0010-938x(99)00076-1
Google Scholar
[16]
D. -c. Chen, W. -f. Li, W. -h. Gong, G. -x. Wu, J. -f. Wu, Microstructure and formation mechanism of Ce-based chemical conversion coating on 6063 Al alloy, Transactions of Nonferrous Metals Society of China, 19 (2009) 592-600.
DOI: 10.1016/s1003-6326(08)60318-0
Google Scholar