A Study on Thermal Fatigue Behavior of Al-Si-Mg Casting Alloys

Article Preview

Abstract:

The thermal fatigue behaviors of traditional Al-Si-Mg casting alloy and optimized Al-Si-Mg casting alloys at different thermal fatigue temperatures were investigated. Fatigue cracking appeared on the surface of traditional Al-Si-Mg alloy after 450 thermal cycles at 300 °C thermal fatigue temperature. However, the fatigue cracking was not found on the surface of optimized Al-Si-Mg alloy at the limited thermal fatigue cycles (less than 4450 times). Moreover, the optimized Al-Si-Mg alloy only occurred to elastic deformation and could not emerge in irreversible deformation. The grain refinement in the optimized Al-Si-Mg alloy could make the thermal fatigue cracking appeared much later and propagated much slowly. These results showed that the thermal fatigue resistance of optimized Al-Si-Mg alloy was superior to that of traditional Al-Si-Mg alloy.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 881-883)

Pages:

1355-1360

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Hitchcock, Y. Wang and Z. Fan: Acta mater. Vol. 55 (2007), p.1589.

Google Scholar

[2] S. Tzamtzis, H. Zhang, N.H. Babu and Z. Fan: Mater. Sci. Eng. A. Vol. 527 (2010), p.2929.

Google Scholar

[3] K.B. Shah, S. Kumar and D.K. Dwivedi: Mater. Des. Vol. 28 (2007), p. (1968).

Google Scholar

[4] J.Y. Yao, D.A. Graham, B. Rinderer and M.J. Couper: Micron. Vol. 32 (2001), p.865.

Google Scholar

[5] S.A. Kori, B.S. Murty and M. Chakraborty: Mater. Sci. Eng. A. Vol. 283 (2000), p.94.

Google Scholar

[6] K. Nogita, A. Knuutinen and S.D. McDonald: J. Light Met. Vol. 1 (2001), p.219.

Google Scholar

[7] A. Knuutinen, K. Nogita and S.D. McDonald: J. Light Met. Vol. 1 (2001), p.229.

Google Scholar

[8] A. Knuutinen, K. Nogita and S.D. McDonald: J. Light Met. Vol. 1 (2001), p.241.

Google Scholar

[9] X.H. Zhang, G.C. Su and Y.Y. Han: Mater. Sci. Eng. A. Vol. 527 (2010), p.3852.

Google Scholar

[10] X.H. Zhang, G.C. Su and C.W. Ju: Mater . Des. Vol. 31 (2010), p.4408.

Google Scholar

[11] W.C.M. Lawrence and G.W. Han: Compos. Part A. Vol. 37 (2006), p.1858.

Google Scholar

[12] S.H. Park, S.G. Hong and B.H. Lee: Int. J. Fatigue Vol. 32 (2010), p.1835.

Google Scholar

[13] B. Timann, L. Detlef and L. Jochen: Mater. Sci. Eng. A. Vol. 468-470 (2007), p.184.

Google Scholar

[14] M. Jayaprakash, Y. Mutoh and K. Asai: Int. J. Fatigue Vol. 32 (2010), p.1788.

Google Scholar

[15] T.L. Teng, C.P. Fung and P.H. Chang: Eng. Fail Anal. Vol. 10 (2003), p.131.

Google Scholar