Determined the Activation Energy of the Decomposition of Calcium Carbonate by Nonlinear Isoconversional Method

Article Preview

Abstract:

The nonlinear isoconversional method has been applied to data for nonisothermal thermal decomposition of calcium carbonate. It is shown that the dependence derived from nonisothermal data can reveal the complexity of solid reaction. Therefore, the nonlinear isoconversional method is recommended as a trustworthy way of obtaining the activation energy of solid reaction under nonisothermal conditions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 881-883)

Pages:

1522-1525

Citation:

Online since:

January 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.W. Cahn, Grain boundary nucleated reactions. Acta Metall. 4 (1956) 449-459.

Google Scholar

[2] K.A. Jackson, D.R. Uhlmann, and J.D. Hunt, On the nature of crystal growth from the melt, J. Cryst. Growth. 1 (1967) 1-36.

Google Scholar

[3] J.D. Gunton, M. Droz, Introduction to the Theory of Metastable and Unstable States, Springer-Verlag, Berlin, (1983).

Google Scholar

[4] K. Sekimoto, Evolution of the domain structure during the nucleation-and-growth process with non-conserved order parameter, Physica 135 A (1986) 328-346.

DOI: 10.1016/0378-4371(86)90146-9

Google Scholar

[5] K.R. Coffey, L.A. Clevenger, K. Barmak, A.A. Rudman, and C.V. Thompson, Experimental evidence for nucleation during thin-film reactions, Appl. Phys. Lett. 55 (1989) 852-854.

DOI: 10.1063/1.102447

Google Scholar

[6] J. S estak, Thermophysical Properties of Solids, Their Measurements and Theoretical Analysis, Elsevier, Amsterdam. (1984).

Google Scholar

[7] M.E. Brown, D. Dollimore, and A.K. Galwey, Comprehensive Chemical Kinetics Vol. 22, Elsevier, Amsterdam, (1980).

Google Scholar

[8] M.E. Brown, Steps in a minefield some kinetic of thennal analysis J. Therm. Anal. 49 (1997) 17-32.

Google Scholar

[9] M. Maciejewski, Somewhere between fiction and reality – the usefulness of kinetic data of solid-state reactions, J. Therm. Anal. 38 (1992) 51-70.

DOI: 10.1007/bf02109108

Google Scholar

[10] J. Sestak, Diagnostic limits of phenomenological kinetic models introducing the accommodation,J. Therm. Anal. 36 (1990) 1997-(2007).

Google Scholar

[11] S. Vyazovkin, C. A. Wight, Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data, Thermochim. Acta 340-341(1999) 53-68.

DOI: 10.1016/s0040-6031(99)00253-1

Google Scholar

[12] S. Vyazovkin, C. A. Wight, Kinetics in solids, Annu. Rev. Phys. Chem. 48(1997) 125-149.

DOI: 10.1146/annurev.physchem.48.1.125

Google Scholar

[13] S. Vyazovkin, Kinetic concepts of thermally simulated reactions in solids: a view from a historical perspective, Int. Rev Phys. Chem. 19 (2000) 45-60.

DOI: 10.1080/014423500229855

Google Scholar

[14] S. Vyazovkin, Isoconversional kinetics, in: The Handbook of Thermal Analysis & Calorimetry, Vol. 5: Recent Advances, Techniques and Applications, Eds. M. E. Brown, P. K. Gallagher, Elsevier, 2008, pp.503-538.

DOI: 10.1016/s1573-4374(08)80016-7

Google Scholar

[15] S. Vyazovkin, C. A. Wight, Kinetics of thermal decomposition of cubic ammonium perchlorate, Chem. Mater. 11 (1999) 3386-3393.

DOI: 10.1021/cm9904382

Google Scholar

[16] S. Vyazovkin, C. A. Wight, Ammonium dinitramide: kinetics and mechanism of thermal decomposition, J. Phys. Chem. A 101 (1997) 5653-5658.

DOI: 10.1021/jp962547z

Google Scholar

[17] S. Vyazovkin, C. A. Wight, Isothermal and Nonisothermal Reaction Kinetics in Solids: In Search of Ways toward Consensus, J. Phys. Chem. A 101 (1997)8279-8284.

DOI: 10.1021/jp971889h

Google Scholar

[18] S. Vyazovkin, D. Dollimore, Linear and Nonlinear Procedures in Isoconversional Computations of the Activation Energy of Nonisothermal Reactions in Solids.J. Chem. Inf. Comp. Sci., 36 (1996) 42-45.

DOI: 10.1021/ci950062m

Google Scholar

[19] S. Vyazovkin, A Unified Approach to Kinetic Processing of Nonisothermal Data. Int. Chem. Kinet. 28 (1996) 95- 101.

DOI: 10.1002/(sici)1097-4601(1996)28:2<95::aid-kin4>3.0.co;2-g

Google Scholar

[20] S. Vyazovkin, Alternative description of process kinetics, Thermochimica Acta, 211 (1992) 181-187.

DOI: 10.1016/0040-6031(92)87018-6

Google Scholar

[21] S. Vyazovkin, Evaluation and Application of Isokinetic Relationships: The Thermal Decomposition of Solids under Nonisothermal Conditions, J. Chem. In$ Comput. Sci. 34 (1994) 1273-1278.

DOI: 10.1021/ci00022a008

Google Scholar

[22] S. Vyazovkin, Modification of the Integral Isoconversional Method to Account for Variation in the Activation Energy, J Comput Chem, Vol. 22, No. 2 (2001) 178–183.

DOI: 10.1002/1096-987x(20010130)22:2<178::aid-jcc5>3.0.co;2-#

Google Scholar

[23] S. Vyazovkin, W. Linert, False Isokinetic Relationships Found in the Nonisothermal Decomposition of Solids, Chem. Phys. 193 (1995) 109-118.

DOI: 10.1016/0301-0104(94)00402-v

Google Scholar

[24] S. Vyazovkin, A.I. Lesnikovich, Estimation of the pre-exponential factor in the isoconversional calculation of effective kinetic parameters Thermochim. Acta 128 (1988) 297-300.

DOI: 10.1016/0040-6031(88)85372-3

Google Scholar

[25] S. Vyazovkin, Reply to What is meant by the term 'variable activation energy'when applied in the kinetics analyses of solid state decompositions (crystolysis reactions)?,. Thermochim. Acta 397 (2003) 269-271.

DOI: 10.1016/s0040-6031(02)00391-x

Google Scholar