Morphological and Compositional Changes in the SiO2/SiC Interfacial Layer Induced by Thermal Annealing of Different Temperature

Article Preview

Abstract:

The authors have systematically investigated the effects of different annealing temperatures in Ar atmosphere on the SiO2/4H-SiC interfaces by scan electron microscope (SEM) and energy dispersive spectrometer (EDS). Results show that the annealing temperatures are strongly correlated with the morphological and compositional changes of SiO2/4H-SiC interface. Annealing at 600 °C can significantly improve the quality of SiO2/4H-SiC interface. However, the sample annealed at 350 °C and 900 °C displays some particles. The reason for such improvement in the quality of the SiO2/4H-SiC interface after moderate temperature annealing at 600 °C can be explained by the formation and consumption of carbon clusters and silicon oxycarbides during annealing.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 884-885)

Pages:

304-307

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Szilágyi, P. Petrik, T. Lohner, A. A. Koós, M. Fried and G. Battistig: J. Appl. Phys. Vol. 104 (2008), p.014903.

DOI: 10.1063/1.2949268

Google Scholar

[2] S. A. Corrêa, C. Radtke, G. V. Soares, L. Miotti, I. J. R. Baumvol, S. Dimitrijev, J. Han, L. Hold, F. Kong and F. C. Stedile: Appl. Phys. Lett. Vol. 94 (2009), p.251909.

DOI: 10.1063/1.3159812

Google Scholar

[3] S. A. Corrêa, C. Radtke, G. V. Soares, I. J. R. Baumvol, C. Krug and F. C. Stedile: Electrochem. Solid-State Lett. Vol. 11(2008), p. H258.

DOI: 10.1149/1.2949117

Google Scholar

[4] M. Yoshikawa, S. Ogawa, K. Inoue, H. Seki, Y. Tanahashi, H. Sako, Y. Nanen, M. Kato and T. Kimoto: Appl. Phys. Lett. Vol. 100 (2012), p.082105.

DOI: 10.1063/1.3688173

Google Scholar

[5] S. Wang, M. Di Ventra, S. G. Kim and S. T. Pantelides: Phys. Rev. Lett. Vol. 86 (2001), p.5946.

Google Scholar

[6] W. Lu, L. C. Feldman, Y. Song, S. Dhar, W. E. Collins and W. C. Mitchell: Appl. Phys. Lett. Vol. 85 (2004), p.3495.

Google Scholar

[7] K. C. Chang, N. T. Nuhfer, L. M. Porter and Q. Wahab: Appl. Phys. Lett. Vol. 77 (2000), p.2186.

Google Scholar

[8] H. F. Li, S. Dimitrijev, D. Sweatman, H. Barry Harrison, P. Tanner and B. Feil: J. Appl. Phys. Vol. 86 (1999), p.4316.

Google Scholar

[9] S. Dhar, S. Wang, A. C. Ahyi, T. Isaacs-Smith, S. T. Pantelides, J. R. Williams and L. C. Feldman: Mater. Sci. Forum Vol. 527 (2006), p.949.

Google Scholar

[10] Y. Hijikata, H. Yaguchi, S. Yoshida, Y. Ishida and M. Yoshikawa: J. Vac. Sci. Technol. A Vol. 23 (2005), p.298.

Google Scholar

[11] T. Zheleva, A. Lelis, G. Duscher, F. Liu, I. Levin and M. Das: Appl. Phys. Lett. Vol. 93 (2008), p.022108.

DOI: 10.1063/1.2949081

Google Scholar

[12] G. V. Soares, C. Radtke, I. J. Baumvol and F. C. Stedile: Appl. Phys. Lett. Vol. 88 (2006), p.041901.

Google Scholar

[13] A. Koh, A. Kestle, C. Wright, S. P. Wilks, P. A. Mawby and W. R. Bowen: Appl. Surf. Sci. Vol. 174 (2001), pp.210-1.

Google Scholar