Prokaryotic Expression and Identification on the ag85a and mpb70 Fusion Gene of Mycobacterium bovis

Article Preview

Abstract:

Based on splicing by overlapping extension (SOE) polymerase chain reaction (PCR) ,the ag85a and mpb70 were amplified and the fusion gene ag85a-mpb70 were cloned into pMD18-T vector, and then we got the recombinant plasmid pMD-85a-70. pMD-85a-70 and pET28a (+) were digested by BamHI and EcoRI double enzymes. The purified ag85a-mpb70 fusion gene was subcloned into the expression vector pET28a (+),and the prokaryotic expression vector pET-85a-70 was constructed. Plasmid containing pET-85a-70 was transformed into competence Escherichia coli BL21(DE3).The bacterium was induced by isopropyl-β-D-thiogalactopyranoside (IPTG) and analyzed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), approximately 49 kDa fusion protein was observed on the SDS-PAGE. The protein was analyzed by using Western-blotting. The results indicated that Ag85A-MPB70 was of antigenic activity of Mycobacterium bovis. These results could serve as a basis for further studies on the usefulness of the fusion gene and its expression product in the development of novel vaccine against bovine tuberculosis.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 884-885)

Pages:

498-502

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. F. Brewer, Preventing Tuberculosis with Bacillus Calmette-Gue´rin Vaccine: A Meta-Analysis of the Literature, Clin. Infect. Dis. 31(2000), S64-S67.

DOI: 10.1086/314072

Google Scholar

[2] M. Romano, S. D'Souza, P. Y. Adnet, R. Laali, F Jurion, K. Palfliet and K. Huygen, Priming but not boosting with plasmid DNA encoding mycolyl-transferase Ag85A from Mycobacterium tuberculosis increases the survival time of Mycobacterium bovis BCG vaccinated mice against low dose intravenous challenge with M. tuberculosis H37Rv, Vaccine 24(2006).

DOI: 10.1016/j.vaccine.2005.12.066

Google Scholar

[3] H. G. Wiker, S. Nagai, R. G. Hewinson, W. P. Russell and M. Harboe, Heterogenous expression of the related MPB70 and MPB83 proteins distinguish various substrains of Mycobacterium bovis BCG and Mycobacterium tuberculosis H37Rv, Scand. J. Immunol. 43(1996).

DOI: 10.1046/j.1365-3083.1996.d01-61.x

Google Scholar

[4] M. Harboe, H. G. Wiker, G. Ulvund, B. Lund-Pedersen, A. B. Andersen, R. G. Hewinson and S. Nagai, MPB70 and MPB83 as Indicators of Protein Localization in Mycobacterial Cells, Infect. Immun. 66 (1998), 289-296.

DOI: 10.1128/iai.66.1.289-296.1998

Google Scholar

[5] N. Dhar, V. Rao and A. K. Tyagi, Immunogenicity of recombinant BCG vaccine strains overexpressing components of the antigen 85 complex of Mycobacterium tuberculosis, Med. Microbiol. Immunol. 193(2004), 19-25.

DOI: 10.1007/s00430-002-0170-x

Google Scholar

[6] M. Romano, V. Roupie, M. Hamard and K. Huygen, Evaluation of the immunogenicity of pBudCE4. 1 plasmids encoding mycolyl-transferase Ag85A and phosphate transport receptor PstS-3 from Mycobacterium tuberculosis, Vaccine 24(2006), 4640-4643.

DOI: 10.1016/j.vaccine.2005.08.035

Google Scholar

[7] I. Sugawara, H. Yamada, T. Udagawa and K. Huygen, Vaccination of guinea pigs with DNA encoding Ag85A by gene gun bombardment, Tuberculosis 83(2003), 331-337.

DOI: 10.1016/s1472-9792(03)00054-4

Google Scholar

[8] I. Sugawara, T. Udagawa and T. Taniyama, Protective efficacy of recombinant (Ag85A) BCG Tokyo with Ag85A peptide boosting against Mycobacterium tuberculosis-infected guinea pigs in comparison with that of DNA vaccine encoding Ag85A, Tuberculosis 87(2007).

DOI: 10.1016/j.tube.2006.05.001

Google Scholar

[9] H. M. Vordermeier, P. J. Cockle, A. O. Whelan, S. Rhodes, M. A. Chambers, D. Clifford, K. Huygen, R. Tascon, D. Lowrie, M. J. Colston and R. G. Hewinson, Effective DNA vaccination of cattle with the Mycobacterial antigens MPB83 and MPB70 does nor compromise the specificity of the comparative intradermal tuberculin skin test, Vaccine 19(2000).

DOI: 10.1016/s0264-410x(00)00238-3

Google Scholar

[10] S. L. Young, L. J. Slobbe, M. Peacey, S. C. Gilbert, B. M. Buddle, G. W. de Lisle and G. S. Buchan, Immunogenicity and protective efficacy of mycobacterial DNA vaccines incorporating plasmid-encoded cytokines against Mycobacterium bovis, Immunol. Cell Biol. 88(2010).

DOI: 10.1038/icb.2010.25

Google Scholar

[11] N. A. Parlane, K. Grage, J. Mifune, R. J. Basaraba, D. Neil Wedlock, B. H. A. Rehm and B. M. Buddle, Vaccines Displaying Mycobacterial Proteins on Biopolyester Beads Stimulate Cellular Immunity and Induce Protection against Tuberculosis, Clin. Vaccine Immunol. 19(2012).

DOI: 10.1128/cvi.05505-11

Google Scholar

[12] B. Abel, M. Tameris, N. Mansoor, S. Gelderbloem, J. Hughes, D. Abrahams, L. Makhethe, M. Erasmus, M. de Kock, L. van der Merwe, A. Hawkridge, A. Veldsman, M. Hatherill, G. Schirru, M. G. Pau, J. Hendriks, G. J. Weverling, J. Goudsmit, D. Sizemore, J. B. McClain, M. Goetz, J. Gearhart, H. Mahomed, G. D. Hussey, J. C. Sadoff and W. A. Hanekom, The Novel Tuberculosis Vaccine, AERAS-402, Induces Robust and Polyfunctional CD4+ and CD8+ T Cells in Adults, Am. J. Respir. Crit. Care Med. 181(2010).

DOI: 10.1164/rccm.200910-1484oc

Google Scholar

[13] D. F. Hoft, A. Blazevic, J. Stanley, B. Landry, D. Sizemore, E. Kpamegan, J. Gearhart, A. Scott, S. Kik, M. G. Pau, J. Goudsmit, J. B. McClain and J. Sadoff, A recombinant adenovirus expressing immunodominant TB antigens can significantly enhance BCG-induced human immunity, Vaccine 30(2012).

DOI: 10.1016/j.vaccine.2012.01.048

Google Scholar

[14] F. Yu, J. Wang, J. Dou, H. Yang, X. He, W. Xu, Y. Zhang, K. Hu and N. Gu, Nanoparticle-based adjuvant for enhanced protective efficacy of DNA vaccine Ag85A-ESAT-6-IL-21 against Mycobacterium tuberculosis infection, Nanomedicine 8(2012).

DOI: 10.1016/j.nano.2012.02.015

Google Scholar