[1]
C. H. Zhu,G. W. Meng,Q. Huang,Z. L. Huang. Vertically aligned Ag nanoplate-assembled film as a sensitive and reproducible SERS substrate for the detection of PCB-77. J Hazard Mater, 2012, 211 389-395.
DOI: 10.1016/j.jhazmat.2011.07.118
Google Scholar
[2]
G. A. Baker,D. S. Moore. Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. Anal Bioanal Chem, 2005, 382 (8): 1751-1770.
DOI: 10.1007/s00216-005-3353-7
Google Scholar
[3]
W. D. Li,F. Ding,J. Hu,S. Y. Chou. Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area. Opt Express, 2011, 19 (5): 3925-3936.
DOI: 10.1364/oe.19.003925
Google Scholar
[4]
J. M. Montgomery,A. Imre,U. Welp,V. Vlasko-Vlasov,S. K. Gray. SERS enhancements via periodic arrays of gold nanoparticles on silver film structures. Opt Express, 2009, 17 (10): 8669-8675.
DOI: 10.1364/oe.17.008669
Google Scholar
[5]
J. M. Oran,R. J. Hinde,N. Abu Hatab,S. T. Retterer,M. J. Sepaniak. Nanofabricated periodic arrays of silver elliptical discs as SERS substrates. J Raman Spectrosc, 2008, 39 (12): 1811-1820.
DOI: 10.1002/jrs.2044
Google Scholar
[6]
H. B. Tang,G. W. Meng,Q. Huang,Z. Zhang,Z. L. Huang,C. H. Zhu. Arrays of Cone-Shaped ZnO Nanorods Decorated with Ag Nanoparticles as 3D Surface-Enhanced Raman Scattering Substrates for Rapid Detection of Trace Polychlorinated Biphenyls. Adv Funct Mater, 2012, 22 (1): 218-224.
DOI: 10.1002/adfm.201102274
Google Scholar
[7]
S. Y. Chou,P. R. Krauss,W. Zhang,L. J. Guo,L. Zhuang. Sub-10 nm imprint lithography and applications. J Vac Sci Technol B, 1997, 15 (6): 2897-2904.
DOI: 10.1116/1.589752
Google Scholar
[8]
S. Oh,T. Nagata,J. Volk,Y. Wakayama. Nanoimprint for Fabrication of Highly Ordered Epitaxial ZnO Nanorods on Transparent Conductive Oxide Films. Appl Phys Express, 2012, 5 (9).
DOI: 10.1143/apex.5.095003
Google Scholar
[9]
H. H. Park,X. Zhang,Y. J. Choi,H. Kim,H. H. Park,R. H. Hill. Facile synthesis and size control of Ag nanoparticles by a photochemical reduction at room temperature. J Ceram Soc Jpn, 2010, 118 (1383): 1002-1005.
DOI: 10.2109/jcersj2.118.1002
Google Scholar
[10]
M. Muniz-Miranda. SERS-active Ag/SiO2 colloids: photoreduction mechanism of the silver ions and catalytic activity of the colloidal nanoparticles. J Raman Spectrosc, 2004, 35 (10): 839-842.
DOI: 10.1002/jrs.1220
Google Scholar
[11]
S. P. Chandran,M. Chaudhary,R. Pasricha,A. Ahmad,M. Sastry. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Progr, 2006, 22 (2): 577-583.
DOI: 10.1021/bp0501423
Google Scholar
[12]
J. S. Yang,J. Pan. Hydrothermal synthesis of silver nanoparticles by sodium alginate and their applications in surface-enhanced Raman scattering and catalysis. Acta Mater, 2012, 60 (12): 4753-4758.
DOI: 10.1016/j.actamat.2012.05.037
Google Scholar
[13]
L. Q. Lu,Y. Zheng,W. G. Qu,H. Q. Yu,A. W. Xu. Hydrophobic Teflon films as concentrators for single-molecule SERS detection. J Mater Chem, 2012, 22 (39): 20986-20990.
DOI: 10.1039/c2jm33955b
Google Scholar