[1]
Y.M. Won, K.H. Kim, T.J. Yeo, Effect of cooling rate on ZST, LIT and ZDT of carbon steel near melting point[J]. ISIJ International. 38(10) (1998) 1093-1099.
DOI: 10.2355/isijinternational.38.1093
Google Scholar
[2]
Y. Ohmori, Y. Maehara, Precipitation of NbC and hot ductility of austenitic stainless Steels[J]. Transactions of Japan of Metals. 25(3) (1984) 160-167.
DOI: 10.2320/matertrans1960.25.160
Google Scholar
[3]
S.H. Song, A.M. Guo, D.D. Shen, Z.X. Yuan, J. Liu, T.D. Xu, Effect of boron on the hot ductility of 2. 25Cr1Mo steel[J], Metal Mater Trans A. 360 (1-2) (2003) 96–100.
Google Scholar
[4]
R. Abushosha, R. Vipond, B. Mintz, Influence of sulphur and niobium on hot ductility of as cast steels[J], Materials Science and Technology. 7(12) (1991) 1101-1107.
DOI: 10.1179/mst.1991.7.12.1101
Google Scholar
[5]
H. Matsuoka, K. Osawa, M. Ono, M. Ohmura, Influence of Cu and Sn on hot ductility of steels with various C content[J], ISIJ Int. 37 (3) (1997) 255-262.
DOI: 10.2355/isijinternational.37.255
Google Scholar
[6]
C. Nagasaki, J. Kihara, Effect of copper and tin on hot ductility of ultra-low and 0. 2% carbon steels[J], ISIJ Int. 37(5) (1997) 523–530.
DOI: 10.2355/isijinternational.37.523
Google Scholar
[7]
B. Mintz, D.N. Crowther. Hot ductility of steels and its relationship to the problem of transverse cracking in continuous casting[J], Int. Mater. Rev. 55 (3) (2010) 168–196.
DOI: 10.1179/095066009x12572530170624
Google Scholar
[8]
K.C. Cho, D.J. Mun, Y.M. Koo, J.S. Lee. Effect of niobium and titanium addition on the hot ductility of boron containing steel[J], Mater. Sci. Eng. A. 528 (10-11) (2011) 3556–3561.
DOI: 10.1016/j.msea.2011.01.097
Google Scholar
[9]
B. Mintz, S. Yue, J.J. Jonas, Hot ductility of dteels and its relationship to the problem of transverse cracking during continuous casting[J], Int. Mater. Rev. 36(5) (1991) 187-220.
DOI: 10.1179/imr.1991.36.1.187
Google Scholar
[10]
B. Mintz, The influence of composition on the hot ductility of steels and to the problem of transverse cracking[J], ISIJ International. 39 (1999) 833-855.
DOI: 10.2355/isijinternational.39.833
Google Scholar
[11]
S. Shanmugam, N.K. Ramisetti, R.D.K. Misra, T. Mannering, D. Panda, S. Jansto, Effect of cooling rate on the microstructure and mechanical properties of Nb-microalloyed steels[J], Materials Science and Engineering A. 460-461 (2007) 335-343.
DOI: 10.1016/j.msea.2007.01.054
Google Scholar
[12]
Y. Maehara, K. Yasumoto, Y. Sugitani, Effect of carbon on hot ductility of as-cast low alloy steel[J], Transactions of the Iron and Steel Institute of Japan, 25(10) (1985) 1045-1052.
DOI: 10.2355/isijinternational1966.25.1045
Google Scholar
[13]
D.N. Crowther, B. Mintz, Influence of grain size and precipitation on hot ductility of microalloyed steels[J], Materials Science and Technology. 2(11) (1986) 1099-1105.
DOI: 10.1179/mst.1986.2.11.1099
Google Scholar
[14]
H.G. Suzuki, S. Nishimura, et al. Characteristics of embrittlement in steels above 600℃[J]. Tetsu-to-Hagane (Journal of the Iron and Steel Institute of Japan), 65(14) (1979) 2038-(2046).
DOI: 10.2355/tetsutohagane1955.65.14_2038
Google Scholar
[15]
H.G. Suzuki, S. Nishimura, J. Imamura, et al. Embrittlement of steels occurring in the temperature range from 1000 to 600℃[J], Transactions ISIJ. 24 (1984) 169-177.
DOI: 10.2355/isijinternational1966.24.169
Google Scholar
[16]
B. Minz, J. M. Arrowsmith, Hot-ductility behavior of C-Mn-Nb-Al steels and its relationship to crack propagation during the straightening of continuously cast strand[J], Metals technology. 6(1979) 24-32.
DOI: 10.1179/030716979803276471
Google Scholar