The Applications of Neural Network Filter to Estimation of Oil Spoil in Sea

Article Preview

Abstract:

The oil spoil detection is an important problem in many applications such as oil exploration and transportation. But in some application such as sea, this task is very difficult because of the strong clutter. Many algorithms have been proposed for this problem. The Maximum Likelihood (ML) is one of those good solutions. This paper describes an application of neural network (NN) for obtaining the global optimal solution of finding oil spoil. It improves the estimation accuracy. The computation complexity is modest.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 889-890)

Pages:

1625-1629

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. C. Schweppe, Sensor array data processing for multiple signal sources, IEEE Trans. On Inform. Theory Vol. 14, No. 3, pp.294-305, (1968).

DOI: 10.1109/tit.1968.1054121

Google Scholar

[2] R. O. Schmidt, Multiple emitter location and signal parameter estimation, IEEE Trans., on Antennas Propagat., Vol. 34, No. 3, pp.276-280, (1986).

DOI: 10.1109/tap.1986.1143830

Google Scholar

[3] S. S. Reddi, Multiple source location- A digital approach, IEEE Trans. Aerosp. Electron. Syst., vol. AES-15, pp.95-105, (1979).

DOI: 10.1109/taes.1979.308800

Google Scholar

[4] R. Kumaresan and D. W. Tufts, Estimating the angles of arrival of multiple plane waves, IEEE Trans. Aerosp. Electron. Syst., vol. AES-19, pp.134-139, (1983).

DOI: 10.1109/taes.1983.309427

Google Scholar

[5] L. C. Godara, application of Antenna Array to mobile Communications, Part II: Beam-Forming and Direction-of-Arrivial Considerations, Proc. IEEE, vol. 85, pp.1195-1245, (1997).

DOI: 10.1109/5.622504

Google Scholar

[6] I. Ziskind and M. Wax, Maximum likelihood localization of multiple sources by alternating projection, IEEE Trans. on Acoust., Speech, Signal Processing, Vol. 36, No. 10, pp.1553-1560, (1988).

DOI: 10.1109/29.7543

Google Scholar

[7] K. Sharman, Maximum Likelihood estimation by simulated annealing", Proc., ICASSP, 88, New York, pp.2741-2744, (1988).

Google Scholar

[8] P. Stoica and A. B. Gershaman, Maximum-Likelihood DOA Estimation by Data-Supported Grid Search, IEEE Signal Processing Letters, Vol. 6, pp.273-275, (1999).

DOI: 10.1109/97.789608

Google Scholar

[9] P. Stoica and K. C. Sharman, Maximum Likelihood Methods for Direction-of-Arrivial estimation, IEEE Trans. Acoust., Speech, Signal Processing, Vol. 38, pp.1132-1143, (1990).

DOI: 10.1109/29.57542

Google Scholar

[10] Shi Y, Eberhart R. A modified particle optimizer. Proceedings of the IEEE international coference on evolutionary computation.  Piscataway, NJ, IEEE Press; pp.69-73, (1998).

Google Scholar

[11] Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of the IEEE international conference on neural networks (Perth, Australia), 1942-1948. Piscataway, NJ: IEEE Service Center; (1995).

Google Scholar