Water-Resistant Poly(Vinyl Alcohol) Hybrid Nanofibers Incorporating Polyhedral Oligosilsesquioxane (POSS)

Article Preview

Abstract:

We have explored a straightforward approach for achieving water-resistant properties of the electrospun PVA nanofibers. The electrospun PVA nanofibers are post-treated with a hydrophobic polyhedral oligosilsesquioxane (POSS) hybrid macromer via a direct urethane reaction between the hydroxyl group of PVA and the isocyanate group of POSS macromers. The POSS-modified PVA nanofibers are characterized by fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and water resistant property. The morphologies of the electrospun PVA nanofibers before and after POSS post-treatments are regular and a narrow distribution of diameters was observed, indicating a uniform post-treatment of POSS macromers onto the PVA nanofibers. Thermal decomposition behavior of the POSS-modified PVA nanofibers was altered compared to the pure PVA nanofibers, suggesting the suppression of thermal decomposition due to the incorporation of POSS macromers. In addition, the pure PVA nanofiber mats immersed in pure water exhibited no characteristic morphology, whereas the POSS-modified PVA nanofiber mats showed the texture morphology, indicating an enhanced water-resistant property.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 89-91)

Pages:

727-732

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.D. Lichtenhan: Comments Inorg. Chem. Vol. 17 (1995), p.115.

Google Scholar

[2] J.D. Lichtenhan, N.Q. Vu, J.A. Carter, J.W. Gilman and F.J. Feher: Macromolecules Vol. 26 (1993), p.2141.

Google Scholar

[3] T.S. Haddad and J.D. Lichtenhan: J. Inorg. Organomet. Polym. Vol. 5 (1995), p.237.

Google Scholar

[4] D.W. Scott: J. Am. Chem. Soc. Vol. 68 (1946), p.356.

Google Scholar

[5] W. Jian and P. T. Mather: Polymer Reviews Vol. 49 (2009), p.25. 45 m 45 m (a) (b) 45 m45 m 45 m45 m (a) (b).

Google Scholar

[6] T.S. Haddad and J.D. Lichtenhan: Macromolecules Vol. 29 (1996), p.7302.

Google Scholar

[7] P.T. Mather, H.G. Jeon, A. Romo-Uribe, T.S. Haddad and J.D. Lichtenhan: Macromolecules Vol. 32 (1999), p.1194.

DOI: 10.1021/ma981210n

Google Scholar

[8] B.S. Kim and P.T. Mather: Polymer Vol. 47 (2006), p.6202.

Google Scholar

[9] B.S. Kim and P.T. Mather: Macromolecules Vol. 35 (2002), p.8378.

Google Scholar

[10] B.S. Kim and P.T. Mather: Macromolecules Vol. 39 (2006), p.9253.

Google Scholar

[11] J. Choi, A.F. Yee and R.M. Laine: Macromolecules Vol. 36 (2003), p.5666.

Google Scholar

[12] G.M. Kim, H. Qin, X. Fang, F.C. Sun and P.T. Mather: J. Polym. Sci., Part B: Polym. Phys. Vol. 41 (2003), p.3299.

Google Scholar

[13] C.K. Kim, B.S. Kim, F.A. Sheikh, U.S. Lee, M.S. Khil and H.Y. Kim: Macromolecules Vol. 40 (2007), p.4823.

Google Scholar

[14] S.H. Tan, R. Inai, M. Kotaki and S. Ramakrishna: Polymer Vol. 46 (2005), p.6128.

Google Scholar

[15] J.H. Park, B.S. Kim, Y.C. Yoo, M.S. Khil and H.Y. Kim: J. Appl. Polym. Sci. Vol. 107 (2008), p.2211.

Google Scholar

[16] J.M. Deitzel, J. Kleinmeyer, D. Harris and N.C. Beck Tan: Polymer Vol. 42 (2001), p.261.

Google Scholar

[17] K. Kim, M. Yu, X. Zong, J. Chiu, D. Fang, Y.S. Seo, B.S. Hsiao, B. Chu and M. Hadjiargyrou: Biomaterials Vol. 24 (2003), p.4977.

DOI: 10.1016/s0142-9612(03)00407-1

Google Scholar

[18] W.S. Dai, T.A. Barbari: J. Membr. Sci. Vol. 156 (1999), p.67.

Google Scholar

[19] W. Benlian, K. Makoto, M. Sukekuni, K. Etsuo: Polym. Gels Network Vol. 6 (1998), p.71.

Google Scholar