Stress Relaxation in Sandwiched Si3N4/Al/Si3N4 Thin Films

Article Preview

Abstract:

An in-situ investigation was performed on the stress relaxation of sandwiched Si3N4/Al/Si3N4 thin films by using multi-beam optical stress sensor (MOSS), a developed technique for substrate curvature measurement. Furthermore, the microstructures of the thin films were characterized by several analyzing techniques, such as X-ray Photoelectron Spectroscopy (XPS), Field Emission Scanning Electron Microscope (FE-SEM) and X-ray energy dispersive spectroscopy (EDS). The results indicated sharp rise and drop of the residual stress due to the cracks of Si3N4 surface layer or the separation of Al particles during annealing process. An appropriate model was suggested to interpret this phenomenon.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 89-91)

Pages:

91-96

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Zhang, L.H. Zhang and K. Lu: Acta Mater. Vol. 54 (2006), p.3553.

Google Scholar

[2] L. Zhang, L.H. Jin, K. Lu: Phys. Rev. Lett. Vol. 85 (2000), p.1484.

Google Scholar

[3] S.L. Lai, J.R.Z. Carisson and L.H. Allen: Appl. Phys. Lett. Vol. 72 (1998), p.1098.

Google Scholar

[4] P. Chaudhari: J. Appl. Phys. Vol. 45 (1974), p.4339.

Google Scholar

[5] R.W. Hoffman: Physics of Thin Films Vol. 3 (1965), p.211.

Google Scholar

[6] A. Gangulee: Acta Metall. Vol. 22 (1974), p.177.

Google Scholar

[7] P. Chaudhari: J. Vac. Sci. Technol. Vol. 9 (1972), p.520.

Google Scholar

[8] D.W. Hoffman and J.A. Thornton: J. Vac. Sci. Technol. Vol. 20(1982), p.355.

Google Scholar

[9] H.L. Sun, Z.X. Song, F. Ma, J.M. Zhan and K.W. Xu: Scripta Materialia Vol. 60 (2009), p.305.

Google Scholar

[10] P. Chaudhari: J. Appl. Phys. Vol. 45 (1974), p.4339.

Google Scholar

[11] Rredric Ericson, Nils Kristensen, Jan-Ake Schweitz, J. Vac. Sci. Technol. B Vol. 9 (1990), p.58.

Google Scholar

[12] W.B. Pennebaker: J. Appl. Phys. Vol. 40 (1969), p.394.

Google Scholar

[13] P.A. Flinn, D.S. Gardner, tc., in: IEEE Transactions on Electron Device, Vol. ED-34, No. 3, (1987), p.689.

Google Scholar

[14] J.P. Chu and T.N. Lin: J. Appl. Phys. Vol. 85 (1999), p.6462.

Google Scholar

[15] W.W. Jung, S.K. Choi, S.Y. Kweon and S.J. Yeom: Appl. Phys. Lett. Vol. 83 (2003), p.2160.

Google Scholar

[16] S.J. Hwang, W.D. Nix and Y.C. Joo: Acta Mater. Vol. 55 (2007), p.5297.

Google Scholar

[17] J.H. Hsieh, M.K. Cheng, C. Li, S.H. Chen and Y.G. Chang: Thin Solid Films Vol. 516 (2008), p.5430.

Google Scholar

[18] S.J. Hwang, J.H. Lee, C.O. Jeong and Y.C. Joo: Scripta Mater. Vol. 56 (2007), p.17.

Google Scholar

[19] B.C. Martin, C.J. Tracy, J.W. Mayer, L.E. Hendrickson: Thin Solid Films Vol. 271 (1995), p.64.

Google Scholar

[20] W.J. Yu, Y.J. Zhang and Q.L. Ye: Phys. Rev. B Vol. 68(2003), p.193403.

Google Scholar

[15] E.

Google Scholar