[1]
D.R. Cloete, A.J. Jager, The nature of the fracture zone in gold mines as revealed by diamond core drilling, Association of Mine Managers. (1972-1973).
Google Scholar
[2]
G.R. Adams and A.J. Jager, Petroscopic observations of rock fracturing ahead of stope faces in deep-level gold mine, Journal of the South African Institute of Mining and Metallurgy. 80 (1980) 204-209.
DOI: 10.1016/0148-9062(80)90623-3
Google Scholar
[3]
E.I. Shemyakin, G.L. Fisenko, M.V. Kurlenya, V.N. Oparin, Zone disintegration of rocks around underground workings—Part I: Data of in-site observations, Journal of Mining Science. 22 (1986) 157-168.
DOI: 10.1007/bf02500863
Google Scholar
[4]
E.I. Shemyakin, M.V. Kyrlenya, V.N. Reva, et al. Effect of zonal disintegration of rocks around underground workings, Dokl. Acad. Nauk USSR. 289 (1986) 1088-1094.
Google Scholar
[5]
R.A. Toupin, Elastic materials with couple stresses, Arch. Ration. Mech. Anal. 11 (1962) 385–414.
DOI: 10.1007/bf00253945
Google Scholar
[6]
R.D. Mindlin, 1964. Micro-structure in linear elasticity. Arch. Ration. Mech. Anal., 16, 1, 51–78.
DOI: 10.1007/bf00248490
Google Scholar
[7]
R. Chambon, D. Caillerie, C. Tamagnini, A strain space gradient plasticity theory for finite strain, Comput. Methods Appl. Mech. Eng. 193 (2004) 2797–2826.
DOI: 10.1016/j.cma.2003.10.016
Google Scholar
[8]
K. Kondo, On the geometrical and physical foundations of the theory of yielding, Proc. Japan. Nat. Congr. Apll. Mech. 2 (1952) 41-47.
Google Scholar
[9]
B.A. Bilby, R. Bullough, E. Smith, Continuous distributions of dislocations: a new application of the methods of non-Reimannian geometry, Proc. Roy. Soc. A 231 (1955) 263-273.
Google Scholar
[10]
V. P. Myasnikov, M.A. Guzev, Thermo-mechanical model of elastic-plastic materials with defect structures, Theoretical and Applied Fracture Mechanics. 33 (2000) 165-171.
DOI: 10.1016/s0167-8442(00)00011-2
Google Scholar
[11]
M.A. Guzev, The Non-Euclidean model of zonal disintegration of rocks around an underground working, Abstracts Book of XXII International Congress of Theoretical and Applied Mechanics. (2008) 257.
Google Scholar
[12]
A. Kadi´c , D.G.B. Edelen, A gauge theory of dislocations and disclinations, Lecture Notes in Physics 174, (1983).
Google Scholar
[13]
K.C. Valanis, The concept of physical metric in thermodynamics, Acta Mechanica. 113 (1995) 169-184.
DOI: 10.1007/bf01212641
Google Scholar
[14]
V. Ciancio, M. Francaviglia, Non-Euclidean Structures as Internal Variables in Non-Equilibrium Thermomechanics, Balkan Journal of Geometry and Its Applications. 8 (2003) 33-43.
Google Scholar
[15]
M.A. Guzev, Non-Euclidean models of elastoplastic materials with structure defects, Lambert Academic Publishing, (2010).
Google Scholar
[16]
J.D. Eshelby, Continuum theory of lattice defects, Solid State Physics. 3 (1956) 79–144.
DOI: 10.1016/s0081-1947(08)60132-0
Google Scholar
[17]
M. A. Guzev , Structure of kinematic and force fields in the Riemannian continuum model, Journal of Applied Mechanics and Technical Physics. 52 (2011) 709–716.
DOI: 10.1134/s002189441105004x
Google Scholar
[18]
M. Galanin, M. Guzev, T. Nizkaya, Threshold behavior of the Riemann curvature in non-euclidean continious medium, Abstracts Book of XXII International Congress of Theoretical and Applied Mechanics. (2008) 270.
Google Scholar