[1]
Korea Institute of Industrial Technology Evaluation and Planning, Modular Bridge Technology Development and Commercialization Mid-report, (2012).
Google Scholar
[2]
Badwan, I. and Liang, R., Performance Evaluation of a Precast Post-tensioned Concrete Multibeam Deck, J. Perform. Constr. Facil., 21(5), (2007), 368-374.
DOI: 10.1061/(asce)0887-3828(2007)21:5(368)
Google Scholar
[3]
Li, L., Ma, Z., Griffey, M. and Oesterle, R., Improved Longitudinal Joint Details in Decked Bulb Tees for Accelerated Bridge Construction: Concept Development, J. Bridge Eng., 15(3), (2010), 327-336.
DOI: 10.1061/(asce)be.1943-5592.0000067
Google Scholar
[4]
Li, L., Ma, Z. and Oesterle, R., Improved Longitudinal Joint Details in Decked Bulb Tees for Accelerated Bridge Construction: Fatigue Evaluation, J. Bridge Eng., 15(5), (2010), 511-522.
DOI: 10.1061/(asce)be.1943-5592.0000097
Google Scholar
[5]
Roberts, K.S., Performance of Transverse Post-tensioned Joints Subjected to Negative Bending and Shear Stresses on a Full-scale, Full-depth, Precast Concrete Bridge Deck System, M.S. thesis, Utah State Univ., Logan, UT, (2011).
DOI: 10.15554/pci.rr.tran-001
Google Scholar
[6]
Zane B. Wells, Performance of Post-tensioned Curved-Strand Connections in Transverse Joints of Precast Bridge Decks, M.S. thesis, Utah State Univ., Logan, UT, (2012).
Google Scholar
[7]
Kim, Y. and Park, J., Shear strength of a grout-type transverse joint, KCI Concrete, 14(1), 8-14.
Google Scholar
[8]
Isa, M.A., do Valle, C.L.R., Abdalla, H.A., Islam, S. and Issa, M.A., Performance of Transverse Joint Grout Materials in Full-depth Precast Concrete Bridge Deck Systems, PCI Journal, 48(4), (2003), 92-103.
DOI: 10.15554/pcij.07012003.92.103
Google Scholar