Molecular Dynamics Investigation on Shearing between Osteopontin and Hydroxyapatite in Biological Materials

Article Preview

Abstract:

Bone, a hard biological material, possesses a combination of high stiffness and toughness, even though the main basic building blocks of bone are simply mineral platelets and protein molecules. Bone has a very complex microstructure with at least seven hierachical levels. This unique material characteristic attracts great attention, but the deformation mechanisms in bone have not been well understood. Simulation at nanolength scale such as molecular dynamics (MD) is proven to be a powerful tool to investigate bone nanomechanics for developing new artificial biological materials. This study focuses on the ultra large and thin layer of extrafibrillar protein matrix (thickness = ~ 1 nm) located between mineralized collagen fibrils (MCF). Non-collagenous proteins such as osteopontin (OPN) can be found in this protein matrix, while MCF consists mainly of hydroxyapatite (HA) nanoplatelets (thickness = 1.5 4.5 nm). By using molecular dynamics method, an OPN peptide was pulled between two HA mineral platelets with water in presence. Periodic boundary condition (PBC) was applied. The results indicate that the mechanical response of OPN peptide greatly depends on the attractive electrostatics interaction between the acidic residues in OPN peptide and HA mineral surfaces. These bonds restrict the movement of OPN peptide, leading to a high energy dissipation under shear loading.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 891-892)

Pages:

3-8

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.W.C. Dunlop, P. Fratzl, Biological composites, Annu. Rev. Mater. Res. 40 (2010) 1-24.

Google Scholar

[2] U.G.K. Wegst, M.F. Ashby, The mechanical efficiency of natural materials, Philos. Mag. 84 (2004) 2167-81.

Google Scholar

[3] M.E. Launey, M.J. Buehler, R.O. Ritchie, On the mechanistic origins of toughness in bone, Annu. Rev. Mater. Res. 40 (2010) 25-53.

DOI: 10.1146/annurev-matsci-070909-104427

Google Scholar

[4] M.J. Buehler, S. Keten, T. Ackbarow, Theoretical and computational hierarchical nanomechanics of protein materials: Deformation and fracture, Prog. Mater. Sci. 53 (2008) 1101-241.

DOI: 10.1016/j.pmatsci.2008.06.002

Google Scholar

[5] W.N. Addison, D.L. Masica, J.J. Gray, M.D. McKee, Phosphorylation-dependent inhibition of mineralization by osteopontin ASARM peptides is regulated by PHEX cleavage, J. Bone Miner. Res. 25 (2010) 695-705.

DOI: 10.1359/jbmr.090832

Google Scholar

[6] P.V. Azzopardi, J. O'Young, G. Lajoie, M. Karttunen, H.A. Goldberg, G.K. Hunter, Roles of electrostatics and conformation in protein-crystal interactions, PLoS ONE 5 (2010) 1-11.

DOI: 10.1371/journal.pone.0009330

Google Scholar

[7] L.W. Fisher, D.A. Torchia, B. Fohr, M.F. Young, N.S. Fedarko, Flexible structures of SIBLING proteins, bone sialoprotein, and osteopontin, Biochem. Biophys. Res. Commun. 280 (2001) 460-5.

DOI: 10.1006/bbrc.2000.4146

Google Scholar

[8] R.A. Vaia, E.P. Giannelis, Polymer nanocomposites: status and opportunities, MRS Bull. 26 (2001) 391-401.

DOI: 10.1557/mrs2001.93

Google Scholar

[9] H.J.C. Berendsen, D. van der Spoel, R. van Drunen, GROMACS: A message-passing parallel molecular dynamics implementation, Comput. Phys. Commun. 1995 (1995) 43-53.

DOI: 10.1016/0010-4655(95)00042-e

Google Scholar

[10] B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theory Comput. 4 (2008) 435-47.

DOI: 10.1021/ct700301q

Google Scholar

[11] E. Lindahl, B. Hess, D. van der Spoel, GROMACS 3. 0: a package for molecular simulation and trajectory analysis, J. Mol. Model. 7 (2001) 306-17.

DOI: 10.1007/s008940100045

Google Scholar

[12] D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, GROMACS: Fast, Flexible, and Free, J. Comput. Chem. 26 (2005) 1701-18.

DOI: 10.1002/jcc.20291

Google Scholar

[13] W. Humphrey, A. Dalke, K. Schulten, VMD - Visual Molecular Dynamics, J. Mol. Graph. 14 (1996) 33-8.

DOI: 10.1016/0263-7855(96)00018-5

Google Scholar

[14] K. Sato, T. Kogure, H. Iwai, J. Tanaka, Atomic-scale {1010} interfacial structure in hydroxyapatite determined by high-resolution transmission electron microscopy, J. Am. Ceram. Soc. 85 (2002) 3054-8.

DOI: 10.1111/j.1151-2916.2002.tb00578.x

Google Scholar

[15] R.M. Wilson, J.C. Elliott, S.E.P. Dowker, Rietveld refinement of the crystallographic structure of human dental enamel apatites, Am. Mineral. 84 (1999) 1406-14.

DOI: 10.2138/am-1999-0919

Google Scholar

[16] J. Hermans, H.J.C. Berendsen, W.F. Van Gunsteren, J.P.M. Postma, A consistent empirical potential for water-protein interactions, Biopolymers 23 (1984) 1513-8.

DOI: 10.1002/bip.360230807

Google Scholar

[17] W.F. van Gunsteren, S.R. Billeter, A.A. Eising, P.H. Hünenberger, P. Krüger, A.E. Mark, W.R.P. Scott, I.G. Tironi, Biomolecular simulation: The GROMOS96 manual and user guide, Zürich, Switzerland, (1996).

Google Scholar

[18] S. Hauptmann, H. Dufner, J. Brickmann, S.M. Kast, R.S. Berry, Potential energy function for apatites, Phys. Chem. Chem. Phys. 5 (2003) 635-9.

DOI: 10.1039/b208209h

Google Scholar

[19] H. Pan, J. Tao, T. Wu, R. Tang, Molecular simulation of water behaviors on crystal faces of hydroxyapatie, Front. Mater. Sci. China 2 (2007) 156-63.

Google Scholar

[20] J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular theory of gases and liquids, New York, (1954).

Google Scholar

[21] T. Darden, D. York, L. Pedersen, Particle mesh Ewald: An N. log(N) method for Ewald sums in large systems, J. Chem. Phys. 98 (1993) 10089-93.

DOI: 10.1063/1.464397

Google Scholar

[22] U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103 (1995) 8577-93.

DOI: 10.1063/1.470117

Google Scholar