[1]
Elber, W., Fatigue crack closure under cyclic tension. Engineering Fracture Mechanics, 1970. 2: pp.37-45.
DOI: 10.1016/0013-7944(70)90028-7
Google Scholar
[2]
Elber, W., The significance of fatigue crack closure. ASTM STP 486 American Society for Testing and Materials, West Conshohocken, Pennsylvania, USA, 1971: pp.230-242.
Google Scholar
[3]
Walker, K., The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum, in Effects of Environment and Complex Load History of Fatigue Life, ASTM STP 462. 1970. pp.1-14.
DOI: 10.1520/stp32032s
Google Scholar
[4]
Newman, et al., Small-crack growth and fatigue life predictions for high-strength aluminium alloys. Part II: crack closure and fatigue analyses. Fatigue & Fracture of Engineering Materials & Structures, 2000. 23(1): pp.59-72.
DOI: 10.1046/j.1460-2695.2000.00242.x
Google Scholar
[5]
Newman Jr, J.C., E.P. Phillips, and M.H. Swain, Fatigue-life prediction methodology using small-crack theory. International Journal of Fatigue, 1999. 21(2): pp.109-119.
DOI: 10.1016/s0142-1123(98)00058-9
Google Scholar
[6]
Newman, J.C., Jr., A crack-closure model for predicting fatigue crack growth under aircraft spectrum loading, in Methods and Models for Predicting Fatigue Crack Growth under Random Loading, ASTM STP 748, J.B. Chang and C.M. Hudson, Editors. 1981, ASTM. pp.53-84.
DOI: 10.1520/stp28334s
Google Scholar
[7]
Walker, N., and Beevers, C.J., A Fatigue Crack Closure Mechanism in Titanium. Fatigue of Engineering Materials and Structures, 1979. 1: pp.135-148.
DOI: 10.1111/j.1460-2695.1979.tb00372.x
Google Scholar
[8]
Paris, P.C., Bucci, R.J., Wessel, E.T., Clark, W.G., and Mager, T.R., Extensive Study of Low Fatigue Crack Growth Rates in A533 and A508 Steels, in 1971 National Symposium on Fracture Mechanics. 1972, ASTM STP 513.
DOI: 10.1520/stp34119s
Google Scholar
[9]
Newman, J.C., Jr., FASTRAN. A fatigue crack growth life prediction code based on the crack-closure concept. Version 5. 3. User Guide. 2010, Fatigue and Fracture Associates LLC.
Google Scholar
[10]
Newman, J.C., Jr., Analyses of Fatigue Crack Growth Databases for Use in a Damage Tolerance Approach for Aircraft Propellers and Rotorcraft. 2007(DOT/FAA/AR-07/49).
Google Scholar
[11]
Newman, J.C., Jr., Yamada, Y., and Newman, J. A., Crack-closure behaviour of 7050 aluminum alloy near threshold conditions for wide range in load ratios and constant Kmax tests. Journal of ASTM International, 2010. 7(4).
DOI: 10.1520/jai102490
Google Scholar
[12]
Wang, C.H., L.R.F. Rose, and J.C. Newman, Closure of plane-strain cracks under large-scale yielding conditions. Fatigue & Fracture of Engineering Materials & Structures, 2002. 25(2): pp.127-139.
DOI: 10.1046/j.8756-758x.2002.00483.x
Google Scholar
[13]
Christian, M., Overview of the Full Scale Durability Tests on F-35 Lightning II Program, in The Aircraft Structural Integrity Program Conference. 2012: San Antonio Texas USA.
Google Scholar
[14]
Wanhill, R.J.H., and Barter, S.A., Fatigue of beta processed and beta heat-treated titanium alloys. 2012: Springer.
DOI: 10.1007/978-94-007-2524-9
Google Scholar
[15]
Walker, K.F., and Newman, J.C., Jr., A new approach to determine near-threshold fatigue crack growth rate properties in high strength coarse-grain titanium alloy with rough and torturous fatigue surfaces, in 27th ICAF Symposium. 2013: Jerusalem, Israel.
DOI: 10.1111/ffe.12148
Google Scholar
[16]
Newman, J.C., Jr., Bigelow, C.A., and Shivakumar, K.N., Three-dimansional elastic-plastic finite-element analyses of constraint variations in cracked bodies. Engineering Fracture Mechanics, 1993. 46(1): pp.1-13.
DOI: 10.1016/0013-7944(93)90299-8
Google Scholar
[17]
Elber, W., Crack-closure and crack growth measurements in surface-flawed titanium alloy Ti-6Al-4V, NASA, Editor. (1975).
Google Scholar
[18]
Zhang, X.P., Li, J. C., Wang, C. H., Ye, L., and Mai, Y. W., Prediction of short fatigue crack propagation behaviour by characterization of both plasticity and roughness induced crack closures. International Journal of Fatigue, 2002. 24(5): pp.529-536.
DOI: 10.1016/s0142-1123(01)00161-x
Google Scholar
[19]
D.S. Dugdale, Yielding of steel sheets containing slits. Journal of Mechanics and Physics of Solids, 1960. 8(2): pp.100-104.
DOI: 10.1016/0022-5096(60)90013-2
Google Scholar
[20]
Suresh, S., and Ritchie, R.O., A geometric Model for Fatigue CRack Closure Induced by Surface Roughness. Metallurgical Transactions A, 1982. 13A(9).
DOI: 10.1007/bf02644803
Google Scholar
[21]
Chang, C.C., and Mear, M., A boundary element method for two-dimensional linear elastic fracture analysis. International Journal of Fracture, 1996. 74: pp.219-251.
DOI: 10.1007/bf00033829
Google Scholar
[22]
Kim, J.H., and Lee, S.B., Behaviour of plasticity-induced crack closure and roughness-induced crack closure in aluminium alloy. International Journal of Fatigue, 2001. 23: p. S247-S251.
DOI: 10.1016/s0142-1123(01)00155-4
Google Scholar