[1]
W. Elber , Engineering Fracture Mechanics. 2(1) (1970) 37.
Google Scholar
[2]
Jr J. Newman, W. Elber, Mechanics of fatigue crack closure, ASTM STP 982, Philadelphia: American Society for Testing and Materials, (1988).
Google Scholar
[3]
JC. Newman. The merging of fatigue and fracture mechanics concepts [microform]: a historical perspective NASA technical memorandum; 110310, (1997).
Google Scholar
[4]
K. Minakawa , Y. Matsuo , AJ. McEvily. The influence of a duplex microstructure in steels on fatigue crack growth in the near-threshold region. Metallurgical Transactions A. 13A(3) (1982) 439-445.
DOI: 10.1007/bf02643352
Google Scholar
[5]
KT. Venkateswara Rao, YW. Kim, CL. Muhlstein, RO. Ritchie. Fatigue-crack growth and fracture resistance of a two-phase (γ + α2) TiAl alloy in duplex and lamellar microstructures. Materials Science and Engineering A. 192–193 (Part 1) (1995)474-482.
DOI: 10.1016/0921-5093(94)03264-5
Google Scholar
[6]
R. Pippan. Threshold and effective threshold of fatigue crack propagation in ARMCO iron I: The influence of grain size and cold working. Materials Science and Engineering A. 138(1) (1991)1-13.
DOI: 10.1016/0921-5093(91)90671-9
Google Scholar
[7]
M. Niinomi, T. Kobayashi, A. Shimokawa. Fatigue Crack Propagation Characteristics and Deformation-Induced Transformation in Ti-6Al-2Sn-4Zr-6Mo Alloy. Proc of the Japan Intern SAMPE symposium: Advanced materials: new processes and reliability 3rd International symposium, Advanced materials: new processes and reliability; (1993).
DOI: 10.2355/tetsutohagane1955.73.10_1405
Google Scholar
[8]
J. Petit, G. Henaff, C. Sarrazin-Baudoux. Mechanisms and modeling of near-threshold fatigue crack propagation. In: NewmanJr JC, Piascik RS, editors. Fatigue Crack Growth threshold, Endurance Limits and Design, ASTM STP 1372, (2000) 3-30.
DOI: 10.1520/stp13423s
Google Scholar
[9]
J. Petit, Influence of environment on small fatigue crack growth. In Small Fatigue Cracks, Mechanics, Mechanisms and Applications, K.S. Ravichandran, R.O. Ritchie and Y. Murakami, eds., Elsevier Pub., (1999)167-178.
DOI: 10.1016/b978-008043011-9/50016-8
Google Scholar
[10]
K. Vor, C. Gardin, C. Sarrazin - Baudoux, J. Petit. Wake length and loading history effects on crack closure of through-thickness long and short cracks in 304L: Part II - 3D numerical simulation. Engineering Fracture Mechanics. 99 (2013) 306-323.
DOI: 10.1016/j.engfracmech.2013.01.014
Google Scholar
[11]
K. Vor, C. Gardin, C. Sarrazin - Baudoux, J. Wake length and loading history effects on crack closure of through-thickness long and short cracks in 304L: Part I - Experiments. Engineering Fracture Mechanics. 99 (2013) 266-277.
DOI: 10.1016/j.engfracmech.2013.01.003
Google Scholar
[12]
H. Alizadeh, S. Simandjuntak, DJ. Smith, MJ. Pavier. Prediction of fatigue crack growth rates using crack closure finite element analysis. International Journal of fatigue. 29 (2007)1711-1715.
DOI: 10.1016/j.ijfatigue.2006.12.002
Google Scholar
[13]
A. Gonzalez-Herrera, J. Zapatero. Tri-dimensional numerical modelling of plasticity induced fatigue crack closure. Engineering Fracture Mechanics. 75 (2008) 4513-4528.
DOI: 10.1016/j.engfracmech.2008.04.024
Google Scholar
[14]
C. -Y. Hou. Simulation of crack shape evolution using the finite element technique and considering the crack closure effects. International Journal of fatigue. 33 (2001) 719-726.
DOI: 10.1016/j.ijfatigue.2010.11.022
Google Scholar
[15]
A. Gonzalez-Herrera, J. Zapatero. Influence of minimum element size to determine crack closure stress by the finite element method. Engineering Fracture Mechanics. 72 (2005) 337-355.
DOI: 10.1016/j.engfracmech.2004.04.002
Google Scholar