[1]
N.E. Frost and D.S. Dugdale, Tile propagation of fatigue cracks in sheet specimens. J. Mech. Phys. Solid 6 (2), 92-110 (1958).
Google Scholar
[2]
N.E. Frost, Propagation of fatigue cracks in various sheet materials. J. mech. Engng Sci. 1 (2), 151 – 170 ( 1959).
Google Scholar
[3]
P.C. Paris, M.P. Gomez, W.E. Anderson, A rational analytical theory of fatigue, The Trend of Engineering, Vol. 13 (1961), p.9–14.
Google Scholar
[4]
P.C. Paris and F. Erdogan, A critical analysis of crack propagation laws. J. bas. Engng. 85. 4, 528-534 (1963).
Google Scholar
[5]
W. Elber, Fatigue crack closure under cyclic tension, Eng. Fract. Mech. 2, 37-45 (1970).
Google Scholar
[6]
W. Elber, The significance of fatigue crack closure, Damage tolerance in aircraft structures. ASTM STP 486 (1971), p.230–242.
DOI: 10.1520/stp26680s
Google Scholar
[7]
J. Schijve, Fatigue crack closure, observations and technical significance, Report LR-485, Delft University of Technology (1986).
Google Scholar
[8]
A.U. de Koning, A simple crack closure model for prediction of fatigue crack growth rates under variable amplitude loading, NLR MP 80006, (1980).
DOI: 10.1520/stp28791s
Google Scholar
[9]
J.C. Newman jr., A finite-element analysis of fatigue crack closure, Mechanics of crack growth, ASTM STP 590 (1976).
DOI: 10.1520/stp33952s
Google Scholar
[10]
J. Schijve, Fatigue of Structures and Materials, second ed., Springer Science+Business Media, B.V., (2009).
Google Scholar
[11]
S. Zhang, R. Marissen, K. Schulte, K.K. Trautmann, H. Nowack, J. Schijve, Crack propagation studies on Al 7475 on the basis of constant amplitude and selective variable amplitude loading histories, Fatigue Fract. Engng Mater. Struct. 10 (4), 315-332 (1987).
DOI: 10.1111/j.1460-2695.1987.tb00210.x
Google Scholar
[12]
J. Schijve, Fatigue crack closure, observations and technical significance, Report LR-485, Delft University of Technology (1986).
Google Scholar
[13]
A. Clerivet, C. Bathias, Study of crack tip opening under cyclic loading taking into account the environment and R ratio, Eng. Fract. Mech. 12, 599-611 (1986).
DOI: 10.1016/0013-7944(79)90100-0
Google Scholar
[14]
C. Matias, E. Katsav, Evaluation of the Strip-Yield Retardation Model for Predictions of Fatigue Crack Growth under Typical Aircraft Loading Spectra, In: A. Brot (Ed) Proceedings of the 27th Symposium of the International Committee on Aeronautical Fatigue and Structural Integrity, Jerusalem, Israel (2013).
Google Scholar