[1]
Y. Okazaki and E. Gotoh, Metal release from stainless steel, Co–Cr–Mo–Ni–Fe and Ni–Ti alloys in vascular implants. Corrosion Science, 50 (2008) 3429-3438.
DOI: 10.1016/j.corsci.2008.09.002
Google Scholar
[2]
R. Banerjee, S. Nag, and H.L. Fraser, A novel combinatorial approach to the development of beta titanium alloys for orthopaedic implants. Materials Science and Engineering: C, 25 (2005) 282-289.
DOI: 10.1016/j.msec.2004.12.010
Google Scholar
[3]
F. Witte, The history of biodegradable magnesium implants: A review. Acta Biomater, 6 (2010) 1680-1692.
Google Scholar
[4]
F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, and H. Windhagen, In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 26 (2005) 3557-3563.
DOI: 10.1016/j.biomaterials.2004.09.049
Google Scholar
[5]
F. Witte, J. Fischer, J. Nellesen, H. -A. Crostack, V. Kaese, A. Pisch, F. Beckmann, and H. Windhagen, In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials, 27 (2006) 1013-1018.
DOI: 10.1016/j.biomaterials.2005.07.037
Google Scholar
[6]
T. Kraus, S.F. Fischerauer, A.C. Hänzi, P.J. Uggowitzer, J.F. Löffler, and A.M. Weinberg, Magnesium alloys for temporary implants in osteosynthesis: In vivo studies of their degradation and interaction with bone. Acta Biomater, 8 (2012) 1230-1238.
DOI: 10.1016/j.actbio.2011.11.008
Google Scholar
[7]
R.K. Singh Raman, N. Birbilis, and J. Efthimiadis, Corrosion of Mg alloy AZ91 – the role of microstructure. Corrosion Engineering, Science and Technology, 39 (2004) 346-350.
DOI: 10.1179/174327804x13208
Google Scholar
[8]
N. Kirkland, M. Staiger, D. Nisbet, C.J. Davies, and N. Birbilis, Performance-driven design of Biocompatible Mg alloys. JOM, 63 (2011) 28-34.
DOI: 10.1007/s11837-011-0089-z
Google Scholar
[9]
M.B. Kannan and R.K.S. Raman, In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterials, 29 (2008) 2306-2314.
DOI: 10.1016/j.biomaterials.2008.02.003
Google Scholar
[10]
G. Song, Control of biodegradation of biocompatable magnesium alloys. Corrosion Science, 49 (2007) 1696-1701.
DOI: 10.1016/j.corsci.2007.01.001
Google Scholar
[11]
X.N. Gu, W.R. Zhou, Y.F. Zheng, Y. Cheng, S.C. Wei, S.P. Zhong, T.F. Xi, and L.J. Chen, Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - In simulated body fluid. Acta Biomater, 6 (2010) 4605-4613.
DOI: 10.1016/j.actbio.2010.07.026
Google Scholar
[12]
M. Karl and J.R. Kelly, Influence of loading frequency on implant failure under cyclic fatigue conditions. Dent Mater, 25 (2009) 1426-1432.
DOI: 10.1016/j.dental.2009.06.015
Google Scholar
[13]
Z. Fan, Y. Wang, M. Xia, and S. Arumuganathar, Enhanced heterogeneous nucleation in AZ91D alloy by intensive melt shearing. Acta Materialia, 57 (2009) 4891-4901.
DOI: 10.1016/j.actamat.2009.06.052
Google Scholar
[14]
T. -S. Shih, W. -S. Liu, and Y. -J. Chen, Fatigue of as-extruded AZ61A magnesium alloy. Materials Science and Engineering: A, 325 (2002) 152-162.
DOI: 10.1016/s0921-5093(01)01411-3
Google Scholar
[15]
G. Song and A. Atrens, Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance. Advanced Engineering Materials, 5 (2003) 837-858.
DOI: 10.1002/adem.200310405
Google Scholar