Corrosion Fatigue Behaviour of a Common AZ91D Magnesium Alloy in Modified Simulated Body Fluid

Article Preview

Abstract:

Use of Magnesium alloys as body implants are breaking into a new paradigm of biomedical engineering as they are biocompatible, biodegradable and have mechanical properties close to that of bone. Even though corrosion fatigue (CF) and stress corrosion cracking (SCC) failures are among the most common concerns for metallic implants, CF behaviour of magnesium alloys in physiological environments has received little attention. This article reports the CF results of a common cast magnesium alloy (AZ91D) in modified simulated body fluid (m-SBF). Results showed that there was a remarkable difference in fatigue strength of Mg alloys when tests were performed in m-SBF.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 891-892)

Pages:

267-272

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Okazaki and E. Gotoh, Metal release from stainless steel, Co–Cr–Mo–Ni–Fe and Ni–Ti alloys in vascular implants. Corrosion Science, 50 (2008) 3429-3438.

DOI: 10.1016/j.corsci.2008.09.002

Google Scholar

[2] R. Banerjee, S. Nag, and H.L. Fraser, A novel combinatorial approach to the development of beta titanium alloys for orthopaedic implants. Materials Science and Engineering: C, 25 (2005) 282-289.

DOI: 10.1016/j.msec.2004.12.010

Google Scholar

[3] F. Witte, The history of biodegradable magnesium implants: A review. Acta Biomater, 6 (2010) 1680-1692.

Google Scholar

[4] F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, and H. Windhagen, In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 26 (2005) 3557-3563.

DOI: 10.1016/j.biomaterials.2004.09.049

Google Scholar

[5] F. Witte, J. Fischer, J. Nellesen, H. -A. Crostack, V. Kaese, A. Pisch, F. Beckmann, and H. Windhagen, In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials, 27 (2006) 1013-1018.

DOI: 10.1016/j.biomaterials.2005.07.037

Google Scholar

[6] T. Kraus, S.F. Fischerauer, A.C. Hänzi, P.J. Uggowitzer, J.F. Löffler, and A.M. Weinberg, Magnesium alloys for temporary implants in osteosynthesis: In vivo studies of their degradation and interaction with bone. Acta Biomater, 8 (2012) 1230-1238.

DOI: 10.1016/j.actbio.2011.11.008

Google Scholar

[7] R.K. Singh Raman, N. Birbilis, and J. Efthimiadis, Corrosion of Mg alloy AZ91 – the role of microstructure. Corrosion Engineering, Science and Technology, 39 (2004) 346-350.

DOI: 10.1179/174327804x13208

Google Scholar

[8] N. Kirkland, M. Staiger, D. Nisbet, C.J. Davies, and N. Birbilis, Performance-driven design of Biocompatible Mg alloys. JOM, 63 (2011) 28-34.

DOI: 10.1007/s11837-011-0089-z

Google Scholar

[9] M.B. Kannan and R.K.S. Raman, In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterials, 29 (2008) 2306-2314.

DOI: 10.1016/j.biomaterials.2008.02.003

Google Scholar

[10] G. Song, Control of biodegradation of biocompatable magnesium alloys. Corrosion Science, 49 (2007) 1696-1701.

DOI: 10.1016/j.corsci.2007.01.001

Google Scholar

[11] X.N. Gu, W.R. Zhou, Y.F. Zheng, Y. Cheng, S.C. Wei, S.P. Zhong, T.F. Xi, and L.J. Chen, Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - In simulated body fluid. Acta Biomater, 6 (2010) 4605-4613.

DOI: 10.1016/j.actbio.2010.07.026

Google Scholar

[12] M. Karl and J.R. Kelly, Influence of loading frequency on implant failure under cyclic fatigue conditions. Dent Mater, 25 (2009) 1426-1432.

DOI: 10.1016/j.dental.2009.06.015

Google Scholar

[13] Z. Fan, Y. Wang, M. Xia, and S. Arumuganathar, Enhanced heterogeneous nucleation in AZ91D alloy by intensive melt shearing. Acta Materialia, 57 (2009) 4891-4901.

DOI: 10.1016/j.actamat.2009.06.052

Google Scholar

[14] T. -S. Shih, W. -S. Liu, and Y. -J. Chen, Fatigue of as-extruded AZ61A magnesium alloy. Materials Science and Engineering: A, 325 (2002) 152-162.

DOI: 10.1016/s0921-5093(01)01411-3

Google Scholar

[15] G. Song and A. Atrens, Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance. Advanced Engineering Materials, 5 (2003) 837-858.

DOI: 10.1002/adem.200310405

Google Scholar