[1]
J.R. Galvele and S.M. de De Micheli, Mechanism of intergranular corrosion of Al-Cu alloys, Corros. Sci., 10 (1970) pp.795-807.
DOI: 10.1016/s0010-938x(70)80003-8
Google Scholar
[2]
S. Maitra and G. English, Mechanism of localized corrosion of 7075 alloy plate, Metall. Mater. Trans. A, 12(3) (1981) pp.535-541.
DOI: 10.1007/bf02648553
Google Scholar
[3]
K. Jones and D.W. Hoeppner, The interaction between pitting corrosion, grain boundaries, and constituent particles during corrosion fatigue of 7075-T6 aluminium alloy, Int. J. Fatigue, 2009, 31 (2009) pp.686-92.
DOI: 10.1016/j.ijfatigue.2008.03.016
Google Scholar
[4]
A. Uebersax, C. Huber, G. Renaud and M. Liao, Structural integrity of a wing upper skin with exfoliation corrosion, in ICAF 2009, Bridging the gap between theory and operational practice, Rotterdam, The Netherlands, (2009) pp.245-61.
DOI: 10.1007/978-90-481-2746-7_15
Google Scholar
[5]
M. Salagaras, A. Wythe and P. Trathen, Methodology for producing IGC on AA7075-T651, In: Australasian Corrosion Conference, (2012) Melbourne, Australia November.
Google Scholar
[6]
T.J. Harrison, Intergranular corrosion protocol development for 7075-T651 extrusion, International Congress of the Aeronautical Sciences, (2012) Brisbane, Australia.
Google Scholar
[7]
W. Zhang, A. Ruan, D.A. Wolfe and G.S. Frankel, Statistical model for intergranular corrosion growth kinetics, Corros. Sci. 45 (2003) 353-370.
DOI: 10.1016/s0010-938x(02)00090-2
Google Scholar
[8]
S. Ruan, D.A. Wolfe and G.S. Frankel, Statistical Modeling and Computer Simulation of Intergranular Corrosion Growth in AA2024-T3 Aluminium Alloy, J. Stat. Plann. and Inference. 126 (2004) 553-568.
DOI: 10.1016/j.jspi.2003.08.008
Google Scholar
[9]
S. Ruan, W. Zhang, D.A. Wolfe and G.S. Frankel, Statistical modelling of minimum Intergranular Corrosion path length in high-strength aluminium alloy, Technometrics. 46 (1) (2004) 69-75.
DOI: 10.1198/004017004000000121
Google Scholar
[10]
M.A. Arafin and J.A. Szpunar, Modeling of grain boundary character reconstruction and predicting intergranular fracture susceptibility of textured and random polycrystalline materials, Comput. Mater. Sci. 50 (2) (2010) 656-665.
DOI: 10.1016/j.commatsci.2010.09.031
Google Scholar
[11]
M.A. Arafin and J.A. Szpunar, A novel microstructure - Grain boundary character based integrated modeling approach of intergrnaular stress corrosion crack propagation in polycrystalline materials, Comput. Mater. Sci. 47 (4) (2010) 890-900.
DOI: 10.1016/j.commatsci.2009.11.020
Google Scholar
[12]
A. Taleb and J.A. Szpunar, Numerical simulation of the effect of grain size on corrosion process: Surface roughness oscillation and cluster detachment, Corros. Sci. 53 (8) (2011) 2508-2513.
DOI: 10.1016/j.corsci.2011.04.008
Google Scholar
[13]
S. Zhao, D.A. Wolfe, T.S. Huang and G.S. Frankel, Generalized model for IGC growth in aluminium alloys, J. Stat. Plann. and Inference. 137 (2007) 2405-2412.
DOI: 10.1016/j.jspi.2006.09.021
Google Scholar