Mutual Interaction between Fatigue Crack Initiation/Propagation and Microstructural Features in Cast Aluminum Alloys

Article Preview

Abstract:

The correlation between the microstructure, the mechanical properties and the fatigue life of the common aluminum cast alloy Al-7Si-0.3Mg (A356) was investigated. By variation the solution heat treatment temperatures and times the precipitation strengthening effect in the dendritic aluminum solid solution phase and the spheroidization of the eutectic silicon were modified. The results of fully reversed fatigues tests revealed an increase in the fatigue life of specimens that were heat treated at higher temperatures. This observation was supported by analyzing the fatigue crack propagation behavior using the direct current potential drop technique (DCPD). With (i) increasing heat treatment temperature, i.e., increasing dendritic α-Al strength and (ii) roundness of the eutectic silicon particles the resistance to technical fatigue crack initiation, expressed by the threshold value of the stress intensity range Kth, was shifted to higher values.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 891-892)

Pages:

488-493

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Mishnaevsky Jr, N. Lippmann, S. Schmauder, P. Gumbsch, Engineering Fracture Mechanics 63 (1999) 395 – 411.

DOI: 10.1016/s0013-7944(99)00027-2

Google Scholar

[2] H. Ammar, A. Samuel, F. Samuel, Materials Science and Engineering A 473 (2008) 65 – 75.

Google Scholar

[3] G. Nicoletto, R. Koneĉná, S. Fintova, International Journal of Fatigue 41 (2012) 39 – 46.

Google Scholar

[4] M. Couper, A. Neeson, J. Griffiths, Fatigue and Fracture of Engineering Materials and Structures 13 (1990) 213 –227.

Google Scholar

[5] B. Skallerud, T. Iveland, G. Harkegard, Engineering Fracture Mechanics 44 (1993) 857-874.

Google Scholar

[6] S. Stanzl-Tschegg, H. Mayer, E. Tschegg, A. Beste, International Journal of Fatigue 15 (1993) 311 – 316.

Google Scholar

[7] A. Dabayeh, R. Xu, B.P. Du, T. Topper, International Journal of Fatigue 18 (1996) 95 – 104.

Google Scholar

[8] A. Giertler, S. Siegfanz, T. Libally, U. Krupp, W. Michels, Materials Testing 54 (2012) 587 – 591.

DOI: 10.3139/120.110369

Google Scholar

[9] H. Zak, B. Tonn, Giesserei-Praxis 4 (2010) 105 - 111.

Google Scholar

[10] D. Apelian, S. Shivkumar, G. Sigworth, Giesserei-Praxis 3 (1991) 29 – 44.

Google Scholar

[11] G. Shabestari, F. Shahri, Journal of Materials Science 39 (2004) 2023 – (2032).

Google Scholar

[12] T. Lee, F. Major, H. Samuel, Metallurgical and Materials Transactions A 26 (1995) 1553 – 1570.

Google Scholar

[13] B. Zhang, R. Poirier, W. Chen, Giesserei - Praxis 5 (2003) 183 – 190.

Google Scholar

[14] W. Schneider, J. Feikus, Giesserei 83 (1) (1996) 20 – 24.

Google Scholar

[15] K. Gall, N. Yang, M. Horstemeyer, D. McDowell and J. Fan: Metallurgical and Materials. Transactions A 30 (1999) 3079.

Google Scholar

[16] A. Lados, D. Apelian, L. Wang, Metallurgical and Materials Transactions B 42 (2011) 171 – 180.

Google Scholar

[17] S. Siegfanz, A. Giertler, W. Michels, U. Krupp, Materials Science and Engineering A 565 (2013) 21 - 26.

Google Scholar