[1]
H. Maghrabi, The Cyclic Hardening and Saturation Behaviour of Copper Single Crystals, Mater. Sci. Eng. 33 (1978) p.207.
Google Scholar
[2]
D. Kuhlmann-wilsdorf, C. Laird, Dislocation Behavior in Fatigue, Mat. Sci. 27 (2) , (1977), p.137.
Google Scholar
[3]
L. Llanes; J.L. Bassani; C. Laird, Cyclic Response of Polycrystalline Copper—Composite-Grain Model, Acta Metallurgica Et Materialia (1994), 42 (4), p.1279.
DOI: 10.1016/0956-7151(94)90144-9
Google Scholar
[4]
J. Polak, M. Klesnil, Cyclic Stress-Strain Response and Dislocation Structures in Polycrystalline Copper, Mater. Sci. Eng., 63, (1984) p.189.
DOI: 10.1016/0025-5416(84)90120-4
Google Scholar
[5]
Z. Wang, C. Laird, Cyclic Stress-Strain Response and Polycrystalline Copper under Fatigue Conditions Producing Enhanced Strain Localization, Mater. Sci. Eng., 100, (1988) p.57.
DOI: 10.1016/0025-5416(88)90239-x
Google Scholar
[6]
H. Mughrabi. 1992. Introduction to the Viewpoint Set On: Surface Effects in Cyclic Deformation and Fatigue, Scripta Metallurgica et Materiallia, (26), p.1499.
DOI: 10.1016/0956-716x(92)90246-b
Google Scholar
[7]
R. Eckert, C. Larid, J. Bassani, Mechanism of Fracture Produced by Fatigue Cycling with Postive Mean Stress in Copper, Mat. Sci. and Eng. 91 (1981), p.81.
Google Scholar
[8]
H.D. Chandler, S. Kwofie, A Description of Cyclic Creep under Conditions of Axial Cyclic and Mean Stresses, Int. Journal of Fatigue, 27, (2005) p.541.
DOI: 10.1016/j.ijfatigue.2004.09.009
Google Scholar
[9]
D. Das and P.C. Chakraborti, Effect of Stress Parameters on Ratcheting Deformation Stages of Polycrystalline OFHC copper. Fatigue. Frac. Engbg. Mater. Struct. 34, (2011) p.734.
DOI: 10.1111/j.1460-2695.2011.01570.x
Google Scholar
[10]
K.F. Peters, S. Radin, A. Radin, C. Laird, Creep and Fatigue Interaction in Polycrystalline Copper Cycled Under Compressive Mean Stresses, Mat. Sci. Eng. A110 (1989) p.115.
DOI: 10.1016/0921-5093(89)90162-7
Google Scholar
[11]
P. Lukas and L. Kunz, Effect of Mean Stress on Cyclic Stress-Strain Response and High Cycle Fatigue Life, Int. J. Fatigue 11 No 1 (1989) p.55.
DOI: 10.1016/0142-1123(89)90048-0
Google Scholar
[12]
P. Lukas, L. Kunz, M. Svoboda, Stress-Strain Response and Fatigue Life of Copper Single Crystals Cyclically Loaded with a Positive Mean Stress, Mat. Sci. Eng. A, 272 (1), (1999), p.31.
DOI: 10.1016/s0921-5093(99)00462-1
Google Scholar
[13]
S. Kwofie, Cyclic Creep of Copper due to Axial Cyclic and Tensile Mean Stresses, Mat. Sci. Eng. A, 427, (2006) p.263.
DOI: 10.1016/j.msea.2006.04.105
Google Scholar
[14]
M. Klesnil and P. Lukas, Fatigue of Metallic Materials, Materials Science Monographs, 7, Elsevier, Amsterdam, (1980).
Google Scholar
[15]
Z. Wang, W. Romanow, C. Laird, Latent Hardening in Cyclic Deformation of Copper Single Crystals, Metallurgical Trans. A 20(4), (1989), p.759.
DOI: 10.1007/bf02667593
Google Scholar
[16]
M. F. Ashby, The Deformation of Plastically Non-homogeneous materials, Phil. Mag. 21 (170), 1970, p.413.
Google Scholar