Experimental Investigations and Damage Calculations of a Load Time History in the Very High Cycle Fatigue

Article Preview

Abstract:

The main focus of this investigation is to clarify the influence of variable amplitude loadings on subsurface crack initiation and crack growth. Therefore, differently reconstructed load sequences on the basis of a standardized load time history called FELIX are investigated with an R-ratio of -1. The major amount of cycles is situated beneath the fatigue strength. A new damage calculation approach considering inclusion sizes is presented. Thus, the stress amplitude in the S-N curve was normalized with a calculated fatigue limit σw(area), which is defined by Murakami. Afterward, the fatigue life depending on the inclusion size is calculated using a Palmgren/Miner rule. The largest inclusion in the measurement volume was determined using extreme value statistics. Fatigue lives for each investigated load sequence were calculated taking the scatter of inclusion sizes into account.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 891-892)

Pages:

446-451

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Sakai, T.: Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use. In: J. Solid Mech Mater Eng 2009; 3(3): pp.425-439.

DOI: 10.1299/jmmp.3.425

Google Scholar

[2] Yu, Y.; Lu, J.L.; Shou, F.L.; Xu, L.; Bai, B.Z.; Liu, Y.B.: Competition mechanism between microstructure type and inclusion level in determining VHCF behaviour of bainite/martensite dual steels. In: Int. J. Fatigue 2011; 33: pp.500-506.

DOI: 10.1016/j.ijfatigue.2010.10.004

Google Scholar

[3] Shiozawa, K.; Lu, L.; Ishihara, S.: S-N curve characteristics and subsurface crack initiation behavior in ultra-long life fatigue of a high carbon-chromium bearing steel. Fatigue Fract Engng Mat Struct 2001; 24(12): pp.781-90.

DOI: 10.1046/j.1460-2695.2001.00459.x

Google Scholar

[4] Murakami, Y.: Metal fatigue: Effects of small defects and nonmetallic inclusions. Elsevier Science Ltd., (2002).

Google Scholar

[5] Sander, M.; Müller, T., Lebahn, J.: Influence of mean stress and variable amplitude loading on the fatigue behaviour of a high-strength steel in VHCF regime. IJF, (2013).

DOI: 10.1016/j.ijfatigue.2013.04.015

Google Scholar

[6] Mayer, H.; Haydn, W; Schuller, R.; Issler, S.; Bacher-Höchst, M.: Very high cycle fatigue properties of bainitic high carbon-chronium steel under variable amplitude loading. In: IJF, Vol. 28, 2009, pp.1300-1308.

DOI: 10.1016/j.ijfatigue.2009.02.038

Google Scholar

[7] Mayer, H.; Fitzka, M.; Schuller, R.: Variable amplitude loading of Al 2014-T351 at different load ratios using ultrasonic equipment. In: IJF, (2013).

DOI: 10.1016/j.ijfatigue.2013.06.014

Google Scholar

[8] Mayer, H.; Stochjanovic, S.; Ede, C.; Zettl, B.: Beitrag niedriger Lastamplituden zur Ermüdungsschädigung von 0, 15 % C Stahl. In: Mat. -wiss. U. Werkstofftech., 38, 2007, pp.581-590.

DOI: 10.1002/mawe.200700199

Google Scholar

[9] Müller, T.; Sander, M.: On the use of ultrasonic fatigue testing technique – Variable amplitude loadings and crack growth monitoring. Ultrasonics, 53, 2013, pp.1417-1424.

DOI: 10.1016/j.ultras.2013.03.005

Google Scholar

[10] Edwards, P.R.; Darts, J.: Standardised fatigue loading sequences for helicopter rotors – Helix and Felix – Part 1: background and fatigue evaluation and Part 2: final definition of Helix and Felix. NLR TR 84043 U; (1984).

Google Scholar

[11] Roiko, A.; Murakami, Y.: A design approach for components in ultralong fatigue life with step loading. In: IJF, Vol. 41, 2012, pp.140-149.

DOI: 10.1016/j.ijfatigue.2011.12.021

Google Scholar