Calculating the Resistance of a Grain Boundary against Fatigue Crack Growth

Article Preview

Abstract:

One problem of the quantitative description of small fatigue crack propagation is the fluctuating crack growth rate induced by obstacles like grain or phase boundaries. Sometimes cracks stop completely for a large number of cycles sometimes cracks only decelerate, both resulting in an additional number of life time cycles. However, so far it is not clear, what actually determines the resistance of a grain boundary against fatigue cracks. Therefore we investigate small crack propagation through grain boundaries systematically by in-situ imaging in the scanning electron microscope and focused ion beam (FIB) crack initiation. By this unique technique, artificial stage I cracks with constant crack parameters can be observed while interacting with different grain boundaries which gives detailed information on the interaction mechanisms. We identified different useful aspects of the interaction between microcracks and microstructural barriers on the microscopic scale. 3D-tomographs revealed by serial sectioning and FIB give information about the transition process from the initial grain to the neighbouring one. The resulting purely geometrical consideration leads to a quantitative description of the blocking effect of grain boundaries and can be used to calculate the probability of a crack transfer from the orientation data of two neighboring grains only.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 891-892)

Pages:

929-935

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.J. Miller, Fatigue Fract. Eng. Mater. Struct., 5, 3 (1982) 223-232.

Google Scholar

[2] K. Lu, L. Lu, S. Suresh, Science, 324 (2009) 349-352.

Google Scholar

[3] H. Weiland, J. Nardiello, S. Zaefferer, S. Cheong, J. Papazian, Dierk Raabe, Eng. Fracture Mech., 76, 5 (2009) 709-714.

DOI: 10.1016/j.engfracmech.2008.11.012

Google Scholar

[4] B.A. Bilby, A.H. Cotrell, K.H. Swinden, Proc. R. Soc. London Sect. A, 272 (1963) 304-3.

Google Scholar

[5] K. Tanaka, Y. Akiniwa, Y. Nakai, R.P. Wei, Eng. Fracture Mech., 24 (1986) 803-819.

Google Scholar

[6] A. Navarro, E.R. De Los Rios, Phil. Mag. A, 57, 1 (1988) 15-36.

Google Scholar

[7] Y.H. Zhang, L. Edwards, Scripta Metall. Mater., 26 (1992) 1901-(1906).

Google Scholar

[8] L. Edwards, Y.H. Zhang, Acta Metall. Mater., 42, 4 (1994) 1413-1422.

Google Scholar

[9] L. Edwards, Y.H. Zhang, Acta Metall. Mater., 42, 4 (1994) 1423-1431.

Google Scholar

[10] Y. Gao, J.S. Stölken, M. Kumar, R.O. Ritchie, Acta Mater., 55 (2007) 3155–3167.

Google Scholar

[11] T. Zhai, A.J. Wilkinson, J.W. Martin, Acta Mater., 48 (2000) 4917-4927.

Google Scholar

[12] T. Zhai, X.P. Jiang, X. J. Li, M.D. Garratt, G.H. Bray, Int. J. Fatigue, 27 (2005) 1202-1209.

Google Scholar

[13] W. Schaef, M. Marx, H. Vehoff, A. Heckl, P. Randelzhofer, Acta Mater., 59 (2011) 1849-1861.

DOI: 10.1016/j.actamat.2010.11.051

Google Scholar

[14] B. Kuenkler, Dueber, P. Koester, U. Krupp, C.P. Fritzen, H.J. Christ, Eng. Fracture Mech. 75, 3-4 (2008) 715-725.

Google Scholar

[15] E. Ferrie, M. Sauzay, J. of nuclear Mater., 386-88 (2009) 666-669.

Google Scholar

[16] M. Marx, W. Schaef, H. Vehoff, C. Holzapfel, Mat. Sci. Eng. A, 435/436 (2006) 595-601.

Google Scholar

[17] C. Holzapfel, W. Schäf, M. Marx, H. Vehoff, F. Mücklich, Scripta Mat., 56 (2007) 697-700.

DOI: 10.1016/j.scriptamat.2006.12.025

Google Scholar

[18] W. Schaef, Shaker Verlag (2011) ISBN 978-3-8440-0219-5.

Google Scholar

[19] W. Schaef, M. Marx, Acta Mater. 60 (2012) 2425–2436.

Google Scholar