Theoretical Study on Adsorption and Doping of Pd Atom on Graphene

Article Preview

Abstract:

The adsorption and doping of Pd atom on graphene have been investigated using density-functional theory. The structure, binding energy, Mulliken population, and density of states of Pd-graphene systems are calculated. For the adsorbed graphene, the bridge site is the most favorable adsorption site. The adsorbed and doped Pd atom can stay stably on graphene by donating their charges to graphene, resulting in the charge redistribution of graphene. After the Pd functionalization, the hybridization of states of Pd and C atoms can be observed, indicating strong interaction between them.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-18

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[2] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater. 22 (2010) 3906-3924.

DOI: 10.1002/adma.201001068

Google Scholar

[3] R.S. Edwards, K.S. Coleman, Graphene synthesis: relationship to applications, Nanoscale 5 (2013) 38-51.

Google Scholar

[4] M. Wu, C. Cao, J.Z. Jiang, Light non-metallic atom (B, N, O and F)-doped graphene: a first-principles study, Nanotechnology 21 (2010) 505202.

DOI: 10.1088/0957-4484/21/50/505202

Google Scholar

[5] Y.H. Zhang, L.F. Han, Y.H. Xiao, D.Z. Jia, Z.H. Guo, F. Li, Understanding dopant and defect effect on H2S sensing performances of graphene: a first-principles study, Comp. Mater. Sci. 69 (2013) 222-228.

DOI: 10.1016/j.commatsci.2012.11.048

Google Scholar

[6] M. Chi, Y.P. Zhao, Adsorption of formaldehyde molecule on the intrinsic and Al-doped graphene: a first principle study, Comp. Mater. Sci. 46 (2009) 1085-1089.

DOI: 10.1016/j.commatsci.2009.05.017

Google Scholar

[7] S. Wang, A. Manthiram, Graphene ribbon-supported Pd nanoparticles as highly durable, efficient electrocatalysts for formic acid oxidation, Electrochim. Acta 88 (2013) 565-570.

DOI: 10.1016/j.electacta.2012.10.125

Google Scholar

[8] T. Jin, S.J. Guo, J.L. Zuo, S.H. Sun, Synthesis and assembly of Pd nanoparticles on graphene for enhanced electrooxidation of formic acid, Nanoscale 5 (2013) 160-163.

DOI: 10.1039/c2nr33060a

Google Scholar

[9] P.A. Pandey, N.R. Wilson, J.A. Covington, Pd-doped reduced graphene oxide sensing films for H2 detection, Sensor Actuat. B 183 (2013) 478-487.

DOI: 10.1016/j.snb.2013.03.089

Google Scholar

[10] M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys.: Condens. Matter 14 (2002) 2717-2744.

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[11] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B 41 (1990) 7892-7895.

DOI: 10.1103/physrevb.41.7892

Google Scholar

[12] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[13] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[14] K.T. Chan, J.B. Neaton, M.L. Cohen, First-principles study of metal adatom adsorption on graphene, Phys. Rev. B 77 (2008) 235430.

DOI: 10.1103/physrevb.77.235430

Google Scholar

[15] X.J. Wu, X.C. Zeng, Adsorption of transition-metal atoms on boron nitride nanotube: a density-functional study, J. Chem. Phys. 125 (2006) 044711.

DOI: 10.1063/1.2218841

Google Scholar