Cr, Fe - Doped Anatase TiO2 Photocatalyst: DFT+U Investigation on Band Gap

Article Preview

Abstract:

Photocatalytic hydrogen generation holds promise as the future source of environmentally friendly and economically feasible energy source. In order to conduct more efficient photocatalytic reaction, anatase TiO2 doped with transition metals is proposed as catalyst. Investigation was conducted by using density functional theory (DFT) augmented with Hubbard U treatment to correct the band gap of TiO2. Emergence of new states inside the band gap of doped anatase TiO2 can lead to a material with a better photocatalytic property, i.e., able to work at visible light than that of pristine TiO2 which is sensitive to UV light only. The investigated materials comply with standard hydrogen electrode (SHE), thus can be used as photocatalyst in water splitting reaction. Out of the two options tested, TiO2 doped with Fe produces a material with the better photocatalytic properties.Keywords: DFT + U, anatase TiO2, photocatalytic, water splitting, band gap

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-34

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.H. Liao, C.W. Huang, J.C.S. Wu, Catalysts 2, (2012) 490-516.

Google Scholar

[2] A. Fujishima, K. Honda, Nature 238 (1972) 37-38.

Google Scholar

[3] K. Hashimoto, H. Irie, A. Fujishima, Japanese Journal of Applied Physics 44 (2005) 8269-8285.

Google Scholar

[4] A. Zaleska, Doped-TiO2: A Review, Recent Patents on Engineering 2 (2008), 157-164.

Google Scholar

[5] Noor Shahina begum, H.M. Farveez A., K.R. Gunashekar, Bulletin of Material Science, 31 (2008) 747-751.

Google Scholar

[6] K.N. Cao, K.N. Van, A.N. Hoai, T.N. Do, M.N. Van, Advances in Natural Science: Nanoscience and Nanotechnology 2 (2011) 4.

Google Scholar

[7] M. Iwasaki, M. Hara, H. Kawad, H. Tada, S. Ito, Journal of Colloid and Interface Science 224 (2000) 202-204.

Google Scholar

[8] M. Subramanian, S. Vijayalakshmi, S. Venakataraj, R. Jayavel, Thin Solid Films 516 (2008) 3776-3782.

Google Scholar

[9] D. Chen, D. Yang, J. Geng, J. Zhu, Z. Jiang, Applied Surface Science 255 (2008), 2879-2884.

Google Scholar

[10] Z. Zhao, Q. Liu, Catalytic Letter, 124 (2008) 111-117.

Google Scholar

[11] W.X. Liu, J. Ma, X.G. Qu, W.B. Cao, Research on Chemical Intermediate 35 (2009), 321-328.

Google Scholar

[12] L. Mingce, C. Weimin, W. Zhengpeng, L. Guangzeng, Chemical Physics Letter 420 (2006) 71-76.

Google Scholar

[13] D.J. Mowbray, J.I. Martinez, J.M. Garch Lastro, K.S. Thygesen, K.W. Jacobsen, Journal of Physics and Chemistry C 113 (2009) 12301-12308.

Google Scholar

[14] G. Shukri, W.A.E. Prabowo, Nugraha, H.K. Dipojono, Proceedings of International Conference on Physics (2012) 45-48.

Google Scholar

[15] E. Finazzi, C.D. Valentin, G. Pacchioni, A. Selloni, Journal of Chemical Physics 129 (2008) 154113, 1-9.

Google Scholar

[16] B.J. Morgan and G.W. Watson, Surface Science, 601 (2007) 5034.

Google Scholar

[17] C.J. Calzado, N.C. Hernandez, J.F. Sanz, Physical Review B 77 (2008) 045118.

Google Scholar

[18] P. Hohenberg, W. Kohn, Physical Review 136 (1964) B864.

Google Scholar

[19] W. Kohn, L.J. Sham, Physical Review, 140 (1965) A1133.

Google Scholar

[20] M. Cococcioni, S. de Gironcoli, Physical Review B 71 (2005) 035105.

Google Scholar

[21] J.P. Perdew, K. Burke, M. Ernzernhof, Physical Review Letter 77 (1996) 3865.

Google Scholar

[22] P. Gianozzi, et al. Journal of Physics: Condensed Matter 21 (2009) 39.

Google Scholar

[23] H.J. Monkhorst, J.D. Pack, Physical Review B 13 (1976) 5188.

Google Scholar