[1]
J. Nielsen, T. Jacobsen & M. Wandel, Electrochimica Acta Impedance of porous IT-SOFC LSCF: CGO composite cathodes, Electrochimica Acta. 56 (2011) 7963–7974.
DOI: 10.1016/j.electacta.2011.05.042
Google Scholar
[2]
N. M. Sammes, R. Bove, J. Pusz, Fuel Cell Technology Reaching Towards Commercialization, London: Springer, (2006).
Google Scholar
[3]
L. Jiang, T. Wei, R. Zeng, W. -X Zhang, & Y. -H. Huang, Thermal and electrochemical properties of PrBa0. 5Sr0. 5Co2−xFexO5+δ (x = 0. 5, 1. 0, 1. 5) cathode materials for solid-oxide fuel cells, J. Power Sources. 232 (2013) 279–285.
DOI: 10.1016/j.jpowsour.2013.01.064
Google Scholar
[4]
H. J. Park, & J. Y. Park, A promising high-performance lanthanum ferrite-based composite cathode for intermediate temperature solid oxide fuel cells, Solid State Ionics. 244 (2013) 30–34.
DOI: 10.1016/j.ssi.2013.04.026
Google Scholar
[5]
H. A. Rahman, A. Muchtar, N. Muhamad & H. Abdullah, Structure and thermal properties of La0. 6Sr0. 4Co0. 2Fe0. 8O3−δ–SDC carbonate composite cathodes for intermediate-to low-temperature solid oxide fuel cells, J. Ceram. Int. 38 (2012) 1571–1576.
DOI: 10.1016/j.ceramint.2011.09.043
Google Scholar
[6]
Z. Liu, M. Liu, L. Yang & M. Liu, LSM-infiltrated LSCF cathodes for solid oxide fuel cells, J. Energy Chem. 22(4) (2013) 555–559.
DOI: 10.1016/s2095-4956(13)60072-8
Google Scholar
[7]
Stambouli, A. B., & Traversa, E., Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy, Renewable and Sustainable Energy Reviews. 6(5) (2002) 433–455.
DOI: 10.1016/s1364-0321(02)00014-x
Google Scholar
[8]
H. J. Ko, J. Myung, J. -H. Lee, S. -H. Hyun & J. S. Chung, Synthesis and evaluation of (La0. 6Sr0. 4)(Co0. 2Fe0. 8)O3(LSCF)–Y0. 08Zr0. 92O1. 96(YSZ)–Gd0. 1Ce0. 9O2−δ(GDC) dual composite SOFC cathodes for high performance and durability. Int. J. Hydrogen Energy. 37 (2012).
DOI: 10.1016/j.ijhydene.2012.08.099
Google Scholar
[9]
S. Lee, H. Seob, S. Hoon, J. Kim & J. Moon, LSCF–SDC core– shell high-performance durable composite cathode, J. Power Sources. 195, (2010) 118–123.
DOI: 10.1016/j.jpowsour.2009.06.079
Google Scholar
[10]
K. Sasaki et al., Chemical durability of Solid Oxide Fuel Cells: Influence of impurities on long-term performance. J. Power Sources 196, (2011) 9130–9140.
DOI: 10.1016/j.jpowsour.2010.09.122
Google Scholar
[11]
C. Jin, C. Yang, H. Zheng & F. Chen, Intermediate temperature solid oxide fuel cells with Cu1. 3Mn1. 7O4 internal reforming layer, J. Power Sources. 201 (2012) 66–71.
DOI: 10.1016/j.jpowsour.2011.10.107
Google Scholar
[12]
J. -W. Lee et al., Preparation of dense and uniform La0. 6Sr0. 4Co0. 2Fe0. 8O3−δ (LSCF) films for fundamental studies of SOFC cathodes, J. Power Sources. 190 (2009) 307–310.
DOI: 10.1016/j.jpowsour.2009.01.090
Google Scholar
[13]
C. Zuo, M. Liu & M. Liu, Sol-Gel Processing for Conventional and Alternative Energy. (M. Aparicio, A. Jitianu, & L. C. Klein, Eds. ). Boston, MA: Springer US. (2012) 4614-(1957).
DOI: 10.1007/978-1-4614-1957-0
Google Scholar
[14]
F. Tietz, A. Mai & D. Stöver, From powder properties to fuel cell performance – A holistic approach for SOFC cathode development, Solid State Ionics. 179 (2008) 1509–1515.
DOI: 10.1016/j.ssi.2007.11.037
Google Scholar
[15]
A. Ecija et al., Characterization of Ln0. 5M0. 5FeO3–δ (Ln=La, Nd, Sm; M=Ba, Sr) perovskites as SOFC cathodes, Solid State Ionics. 201 (2011) 35–41.
DOI: 10.1016/j.ssi.2011.07.019
Google Scholar
[16]
I. Park, J. Choi, H. Lee & D. Shin, Optimization of Sm0. 5Sr0. 5CoO3−δ–Sm0. 2Ce0. 8O2−δ composite cathodes fabricated by electrostatic slurry spray deposition, Ceram. Int. 39 (2013) 5561–5569.
DOI: 10.1016/j.ceramint.2012.12.070
Google Scholar
[17]
F. Zhao et al., Novel nano-network cathodes for solid oxide fuel cells, J. Power Sources. 185 (2008) 13–18.
DOI: 10.1016/j.jpowsour.2008.07.022
Google Scholar
[18]
X. Zhu et al., Development of La0. 6Sr0. 4Co0. 2Fe0. 8O3−δ cathode with an improved stability via La0. 8Sr0. 2MnO3-film impregnation, Int. J. Hydrogen Energy. 38 (2013) 5375–5382.
DOI: 10.1016/j.ijhydene.2022.01.157
Google Scholar
[19]
T. Yamaguchi, K. V. Galloway, J. Yoon & N. M. Sammes, Electrochemical characterizations of microtubular solid oxide fuel cells under a long-term testing at intermediate temperature operation, J. Power Sources. 196 (2011) 2627–2630.
DOI: 10.1016/j.jpowsour.2010.11.061
Google Scholar