Durability and Stability of LSCF Composite Cathode for Intermediate-Low Temperature of Solid Oxide Fuel Cell (IT-LT SOFC): Short Review

Article Preview

Abstract:

Solid oxide fuel cell (SOFC) is well known as power and heat generation device which converts chemical energy directly from fuel into electricity. SOFC operate at high temperature becomes obstacle for SOFC which reducing ionic conductivity material of current electrolyte, reduce lifetime of cell components, high fabrication cost, limited durability and performance issues. This introduce to environment pollution and decrease the SOFC lifetime. The fabrication of durability and stability composite cathode are comprised from mixing of perovskite La0.6Sr0.4CO0.2Fe0.8 (LSCF) powders with nanoscale ionically conducting ceramic electrolyte materials, SDC-carbonate (SDCc) was overcome this problems. Powder preparation and composite cathode fabrication must consider which as main factors in the development of durability and stability of LSCF-SDCc composite cathode. Powders must in nanoscale to enhance the conductivity and decrease the interfacial polarization resistance and the composite cathode should in nanoporous morphology for achieve high power density over than 500 h and remarkable durability. Calcination also plays in important role and its operations will effects to the SOFC durability and performance. The necessary to prolong the lifetime and increase the SOFC performance has lead to development of durability and stability of SOFC. This paper reviews the durability and stability of the composite cathode and focus on the challenges in material technology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

732-737

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Nielsen, T. Jacobsen & M. Wandel, Electrochimica Acta Impedance of porous IT-SOFC LSCF: CGO composite cathodes, Electrochimica Acta. 56 (2011) 7963–7974.

DOI: 10.1016/j.electacta.2011.05.042

Google Scholar

[2] N. M. Sammes, R. Bove, J. Pusz, Fuel Cell Technology Reaching Towards Commercialization, London: Springer, (2006).

Google Scholar

[3] L. Jiang, T. Wei, R. Zeng, W. -X Zhang, & Y. -H. Huang, Thermal and electrochemical properties of PrBa0. 5Sr0. 5Co2−xFexO5+δ (x = 0. 5, 1. 0, 1. 5) cathode materials for solid-oxide fuel cells, J. Power Sources. 232 (2013) 279–285.

DOI: 10.1016/j.jpowsour.2013.01.064

Google Scholar

[4] H. J. Park, & J. Y. Park, A promising high-performance lanthanum ferrite-based composite cathode for intermediate temperature solid oxide fuel cells, Solid State Ionics. 244 (2013) 30–34.

DOI: 10.1016/j.ssi.2013.04.026

Google Scholar

[5] H. A. Rahman, A. Muchtar, N. Muhamad & H. Abdullah, Structure and thermal properties of La0. 6Sr0. 4Co0. 2Fe0. 8O3−δ–SDC carbonate composite cathodes for intermediate-to low-temperature solid oxide fuel cells, J. Ceram. Int. 38 (2012) 1571–1576.

DOI: 10.1016/j.ceramint.2011.09.043

Google Scholar

[6] Z. Liu, M. Liu, L. Yang & M. Liu, LSM-infiltrated LSCF cathodes for solid oxide fuel cells, J. Energy Chem. 22(4) (2013) 555–559.

DOI: 10.1016/s2095-4956(13)60072-8

Google Scholar

[7] Stambouli, A. B., & Traversa, E., Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy, Renewable and Sustainable Energy Reviews. 6(5) (2002) 433–455.

DOI: 10.1016/s1364-0321(02)00014-x

Google Scholar

[8] H. J. Ko, J. Myung, J. -H. Lee, S. -H. Hyun & J. S. Chung, Synthesis and evaluation of (La0. 6Sr0. 4)(Co0. 2Fe0. 8)O3(LSCF)–Y0. 08Zr0. 92O1. 96(YSZ)–Gd0. 1Ce0. 9O2−δ(GDC) dual composite SOFC cathodes for high performance and durability. Int. J. Hydrogen Energy. 37 (2012).

DOI: 10.1016/j.ijhydene.2012.08.099

Google Scholar

[9] S. Lee, H. Seob, S. Hoon, J. Kim & J. Moon, LSCF–SDC core– shell high-performance durable composite cathode, J. Power Sources. 195, (2010) 118–123.

DOI: 10.1016/j.jpowsour.2009.06.079

Google Scholar

[10] K. Sasaki et al., Chemical durability of Solid Oxide Fuel Cells: Influence of impurities on long-term performance. J. Power Sources 196, (2011) 9130–9140.

DOI: 10.1016/j.jpowsour.2010.09.122

Google Scholar

[11] C. Jin, C. Yang, H. Zheng & F. Chen, Intermediate temperature solid oxide fuel cells with Cu1. 3Mn1. 7O4 internal reforming layer, J. Power Sources. 201 (2012) 66–71.

DOI: 10.1016/j.jpowsour.2011.10.107

Google Scholar

[12] J. -W. Lee et al., Preparation of dense and uniform La0. 6Sr0. 4Co0. 2Fe0. 8O3−δ (LSCF) films for fundamental studies of SOFC cathodes, J. Power Sources. 190 (2009) 307–310.

DOI: 10.1016/j.jpowsour.2009.01.090

Google Scholar

[13] C. Zuo, M. Liu & M. Liu, Sol-Gel Processing for Conventional and Alternative Energy. (M. Aparicio, A. Jitianu, & L. C. Klein, Eds. ). Boston, MA: Springer US. (2012) 4614-(1957).

DOI: 10.1007/978-1-4614-1957-0

Google Scholar

[14] F. Tietz, A. Mai & D. Stöver, From powder properties to fuel cell performance – A holistic approach for SOFC cathode development, Solid State Ionics. 179 (2008) 1509–1515.

DOI: 10.1016/j.ssi.2007.11.037

Google Scholar

[15] A. Ecija et al., Characterization of Ln0. 5M0. 5FeO3–δ (Ln=La, Nd, Sm; M=Ba, Sr) perovskites as SOFC cathodes, Solid State Ionics. 201 (2011) 35–41.

DOI: 10.1016/j.ssi.2011.07.019

Google Scholar

[16] I. Park, J. Choi, H. Lee & D. Shin, Optimization of Sm0. 5Sr0. 5CoO3−δ–Sm0. 2Ce0. 8O2−δ composite cathodes fabricated by electrostatic slurry spray deposition, Ceram. Int. 39 (2013) 5561–5569.

DOI: 10.1016/j.ceramint.2012.12.070

Google Scholar

[17] F. Zhao et al., Novel nano-network cathodes for solid oxide fuel cells, J. Power Sources. 185 (2008) 13–18.

DOI: 10.1016/j.jpowsour.2008.07.022

Google Scholar

[18] X. Zhu et al., Development of La0. 6Sr0. 4Co0. 2Fe0. 8O3−δ cathode with an improved stability via La0. 8Sr0. 2MnO3-film impregnation, Int. J. Hydrogen Energy. 38 (2013) 5375–5382.

DOI: 10.1016/j.ijhydene.2022.01.157

Google Scholar

[19] T. Yamaguchi, K. V. Galloway, J. Yoon & N. M. Sammes, Electrochemical characterizations of microtubular solid oxide fuel cells under a long-term testing at intermediate temperature operation, J. Power Sources. 196 (2011) 2627–2630.

DOI: 10.1016/j.jpowsour.2010.11.061

Google Scholar