The Formation of the Carbon Microcoils without the Catalyst on the Mesh-Type Stainless Steel Substrate

Article Preview

Abstract:

Carbon coils could be synthesized using C2H2/H2 as source gases and SF6 as an incorporated additive gas under the thermal chemical vapor deposition system. The 304 stainless steel plates and the 100 and/or 300-sized stainless steel meshes were used as the substrates. The characteristics of the deposited carbon nanomaterials without the catalyst on the different substrates were investigated according to the injection time of the SF6 flow. In case of the mesh-type stainless steel substrate, the carbon microcoils could be formed without the Ni catalyst. However the plate-type stainless steel substrate could not give rise to the formation of the carbon microcoils without the catalyst, regardless of the injection time of the SF6 flow. The cause for the formation of the carbon microcoils without the catalyst on the mesh-type substrate was discussed in association with the surface energies for the interaction between the as-growing carbon elements and the surface of the substrate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

116-120

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.K. Geim, K.S. Novoselov, Nat. Mater. 6 (2007) 183.

Google Scholar

[2] D. Fejes, K. Herna´di, Materials 3 (2010) 2618.

Google Scholar

[3] L.J. Pan, T. Hayashida, M. Zhang, Y. Nakayama, Jpn. J. Appl. Phys. 40 (2001) L235.

Google Scholar

[4] S. Amelinckx, X.B. Zhang, D. Bernaerts, X.F. Zhang, V. Ivanov, J. B. Nagy, Science 265 (1994) 635.

Google Scholar

[5] W.R. Davies, R.J. Slawson, G.R. Rigby, Nature, 171 (1953) 756.

Google Scholar

[6] S. Motojima, M. Kawaguchi, K. Nozaki, and H. Iwanaga, Carbon 29, (1991) 379.

Google Scholar

[7] N. Tang, J. Wen, Y. Zhang, F. Liu, K. Lin, and Y. Du, ACS Nano 4, (2010) 241.

Google Scholar

[8] S. Motojima, Y. Itoh, S. Asakura, and H. Iwanaga, J. Mater. Sci. 30, (1995) 5049.

Google Scholar

[9] X. Chen and S. Motojima, J. Mater. Sci. 34 (1999) 5519.

Google Scholar

[10] S. Motojima, S. Asakura, T. Kasemura, S. Takeuchi and H. Iwanaga, Carbon 34 (1996) 289.

Google Scholar

[11] S. Yang, X. Chen and S. Motojima, Carbon 44 (2006) 3352.

Google Scholar

[12] K. -D. Kim, S. -H. Kim, N. S. Kim, D. -U. Kim, Kim, Dong-Uk Kim, J. Nanosci. Nanotechnol. 7 (2007) 3969.

Google Scholar

[13] S. -H. Kim, J. Korean Cryst. Growth & Cryst. Tech., 21 (2011) 119.

Google Scholar

[14] M. Asmann, J. Heberlein, E. Pfender, Diamond Relat. Mater. 8 (1999) 1.

Google Scholar

[15] N. -K. Chang and S. -H. Chang, Carbon 46 (2008) 1106.

Google Scholar

[16] C. -C. Su and S. -H Chang, Materials Letters 65 (2011) 1114.

Google Scholar

[17] A. Shaikjee, N. J. Coville, J. Adv. Research 3 (2012) 195.

Google Scholar

[18] X. Qi, C. Qin, W. Zhong, C. Au, X. Ye, Y. Du, Materials, 3 (2010) 4142.

Google Scholar

[19] J. -H. Eum, S. -H. Kim, S. S. Yi, and K. Jang, J. Nanosci. Nanotechnol. 12 (2012) 4397.

Google Scholar

[20] S. Park, Y. -C. Jeon, S. -H. Kim, ECS Solid State Science & Technology 2 (2013) M56-M59.

Google Scholar