Heat-Treated Fe3O4 - Activated Carbon Nanocomposite for High Performance Electrochemical Capacitor

Article Preview

Abstract:

The impact of heat treatment temperature on the electrochemical performance of Fe3O4-activated carbon nanocomposite electrodes was investigated using constant current charge-discharge and Electrochemical Impedance Spectroscopy (EIS). An improved capacitive behaviour was observed due to the effect of enhanced ionic and electronic conductivities of the 4 wt% Fe3O4/AC by thermally heating at 200 °C for 6 hours. It was found that the internal resistance of 4 wt% Fe3O4/AC composite electrode calcined at 200 °C for 6 hours is the smallest (2.97 Ω) in comparison to those untreated (4.36 Ω) composite electrodes. The ion mobility inside the porous composite electrodes is favourable at 200 °C, accompanying with the enhanced electronic conductivity of oxide electrode as a result of improved crystallinity. The EIS results and analysis not only have significant impact on the fundamental understanding of the temperature-dependent structural and electrochemical properties of electrode but also provide the insights on the diffusion mechanism of the nanocomposite in neutral Na2SO3 electrolyte.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

349-354

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Ruiz, C. Blanco, E. Raymundo-Piñero, V. Khomenko, F. Béguin, R. Santamaría, Effects of thermal treatment of activated carbon on the electrochemical behaviour in supercapacitors, Electrochimica Acta 52 (15) (2007) 4969-4973.

DOI: 10.1016/j.electacta.2007.01.071

Google Scholar

[2] K.H. An, W.S. Kim, Y.S. Park, J. -M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee, Y.H. Lee, Electrochemical Properties of High-Power Supercapacitors Using Single-Walled carbon Nanotube Electrodes Advanced Functional Materials 11 (2001) 387-392.

DOI: 10.1002/1616-3028(200110)11:5<387::aid-adfm387>3.0.co;2-g

Google Scholar

[3] S.C. Pang, W.H. Khoh, S.F. Chin, Synthesis and Characterization of Magnetite/Carbon Nanocomposite Thin Films for Electrochemical Applications, Journal of Materials Science Technology 27 (2011) 873-878.

DOI: 10.1016/s1005-0302(11)60158-8

Google Scholar

[4] T. Brousse, D. Bélanger, A Hybrid Fe3O4-MnO2 Capacitor in Mild Aqueous Electrolyte, Electrochemical and Solid-State Letters 6 (11) (2003) A244.

DOI: 10.1149/1.1614451

Google Scholar

[5] N. -L. Wu, Nanocrystalline oxide sueprcaapcitors, Materials Chemistry and Physics 75 (2002) 6-11.

Google Scholar

[6] N. -L. Wu, S. -Y. Wang, C. -Y. Han, D. -S. Wu, L. -R. Shiue, Electrochemical capacitor of magnetite in aqueous electrolyte, Journal of Power Sources 113 (2003) 173-178.

DOI: 10.1016/s0378-7753(02)00482-2

Google Scholar

[7] S.J. Park, Y.H. Kim, Roles of Nanosized Fe3O4 on Supercacitive Properties of Carbon Nanotubes, Current Applied Physics 11 (2011) 462-466.

DOI: 10.1016/j.cap.2010.08.018

Google Scholar

[8] X. Zhao, C. Johnston, P.S. Grant, A novel hybrid supercapacitor with a carbon nanotube cathode and an iron oxide/carbon nanotube composite anode, Journal of Materials Chemistry 19 (46) (2009) 8755.

DOI: 10.1039/b909779a

Google Scholar

[9] D. Chen, G. Ji, Y. Ma, J.Y. Lee, J. Lu, Graphene-encapsulated hollow Fe3O4 nanoparticle aggregates as a high-performance anode material for lithium ion batteries, ACS applied materials & interfaces 3 (8) (2011) 3078-3083.

DOI: 10.1021/am200592r

Google Scholar

[10] C. Masarapu, H.F. Zeng, K.H. Hung, B. Wei, Effect of Temperature on the Capacitance of Carbon Nanotube Supercapacitors, ACS Nano 3 (2009) 2199-2206.

DOI: 10.1021/nn900500n

Google Scholar

[11] S.W. Zhang, G.Z. Chen, Manganese oxide based materials for supercapacitors, Energy Materials: Materials Science and Engineering for Energy Systems 3 (3) (2008) 186-200.

DOI: 10.1179/174892409x427940

Google Scholar

[12] W. -C. Fang, J. -H. Huang, L. -C. Chen, Y. -L.O. Su, K. -H. Chen, Effect of temperature annealing on capacitive and structural properties of hydrous ruthenium oxides, Journal of Power Sources 160 (2) (2006) 1506-1510.

DOI: 10.1016/j.jpowsour.2006.03.017

Google Scholar

[13] C.C. Hu, Y.H. Huang, K.H. Chang, Annealing effects on the physicochemical characteristics of hydrous ruthenium and ruthenium-iridium oxides for electrochemical supercapacitors, Journal of Power Sources 108 (2002) 117-127.

DOI: 10.1016/s0378-7753(02)00011-3

Google Scholar

[14] E.E. Kalu, T.T. Nwoga, V. Srinivasan, J.W. Weidner, Cyclic voltammetric studies of the effects of time and tmeperature on the capacitance of electrochmeically deposited nickel hydroxide, Journal of Power Sources 92 (2001) 163-167.

DOI: 10.1016/s0378-7753(00)00520-6

Google Scholar

[15] K. -W. Nam, W. -S. Yoon, K. -B. Kim, X-ray absorption spectroscopy studies of nickel oxide thin film electrodes for supercapacitors, Electrochimica Acta 47 (2002) 3201-3209.

DOI: 10.1016/s0013-4686(02)00240-2

Google Scholar

[16] J. -K. Chang, Y. -L. Chen, W. -T. Tsai, Effect of heat treatment on material characteristics and pseudo-capacitive properties of manganese oxide prepared by anodic deposition, Journal of Power Sources 135 (1-2) (2004) 344-353.

DOI: 10.1016/j.jpowsour.2004.03.076

Google Scholar

[17] J. -K. Chang, W. -T. Tsai, Microstructure and Pseudocapacitive Performance of Anodically Deposited Manganese Oxide with Various Heat-Treatments, Journal of The Electrochemical Society 152 (10) (2005) A2063.

DOI: 10.1149/1.2034527

Google Scholar

[18] M. -T. Lee, J. -K. Chang, Y. -T. Hsieh, W. -T. Tsai, Annealed Mn–Fe binary oxides for supercapacitor applications, Journal of Power Sources 185 (2) (2008) 1550-1556.

DOI: 10.1016/j.jpowsour.2008.09.007

Google Scholar

[19] W-C. Fang, J-H. Huang, L-C. Chen, Y-L. Su, K-H. Chen, Effect of temperature annealing on capacitive and structural properties of hydrous ruthenium oxides, Journal of Power Sources 160 (2006) 1506-1510.

DOI: 10.1016/j.jpowsour.2006.03.017

Google Scholar

[20] J. R. Macdonald, E. Barsoukov, Impedance Spectroscopy, Theory Experiment and Applications Canada: John Wiley & Sons, Inc (2005).

Google Scholar

[21] V. D. Jovic. (2012). Determination of the correct value of Cdl from the impedance results fitted by the commercially available software [Online]. Available: http: /www. gamry. com [access in Jan 2013].

Google Scholar

[22] P-L Taberna, P. Simon, in: Electrochemical Techniques, edtied by G.Q. Max Lu, Wiley-VCH, Weinheim, Germany (2013).

Google Scholar