Nanocomposite Multilayer Fibrous Membrane for Sustained Drug Release

Article Preview

Abstract:

Building on the success of the many earlier studies on electrospun nanofibers technique which provide a non woven web to the order of nanometers introducing superior properties such as large surface area, superior mechanical properties and ease of implementation in many fields of applications, elctrospun nanofibers became an important issue for many researchers in various fields. Using elctrospun fibers as a drug carrier, is showing a huge promising potential for the future of biomedical application. Our work in this research is focusing on engineering a system to control the drug release profile rate especially for wound dressing. Nanocomposite multilayer fibrous membranes, using electrospinning method, have been developed for drug release in form of sandwich structure of three layers. Inner layer which is kept Polycaprolactane (PCL) loaded with drug. The two outer layers have been changed with different blend ratios between Chitosan (Cs) and PCL as follow [0%:100% Cs:PCL, 30%:70% Cs:PCL, 50%:50% Cs:PCL, 70%:30% Cs:PCL]. The results showed that the release rate has been affected dramatically by the outer layer composition. SEM images showed changing in the morphology due to the different in the composition of outer layer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

364-368

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Limam, S. Selmi, S. Sadok and A. El Abed: Biological and physicochemical properties Vol. 10 (2011) p.640–647.

Google Scholar

[2] G. Galed, B. Miralles, I. Panos, A. Santiago and A'. Heras: Carbohydrate Polymers, vol. 62 (2005) p.316–320.

DOI: 10.1016/j.carbpol.2005.03.019

Google Scholar

[3] H. Homayoni, S. A. H. Ravandi, and M. Valizadeh: Carbohydrate Polymers, vol. 77 (2009) p.656–661.

DOI: 10.1016/j.carbpol.2009.02.008

Google Scholar

[4] V. Leung, R. Hartwell, and H. Yang: iccm-central. org (2011) p.1–6.

Google Scholar

[5] H. K. No, N. Y. Park, S. H. Lee, and S. P. Meyers: International journal of food microbiology Vol. 74 (2002) p.65–72.

Google Scholar

[6] P. K. Dutta, J. Dutta, and V. S. Tripathi: Journal of Scientific and Industrial Research Vol. 63 (2004) p.20–31.

Google Scholar

[7] R. Jayakumar, M. Prabaharan, P. T. Sudheesh Kumar, S. V Nair, and H. Tamura: Biotechnology advances, vol. 29 (2011) p.322–37.

DOI: 10.1016/j.biotechadv.2011.01.005

Google Scholar

[8] I. Yuvarani, S. S. Kumar, J. Venkatesan, S. -K. Kim, and P. N. Sudha: Journal of Biomaterials and Tissue Engineering Vol. 2 (2012) p.54–60.

Google Scholar

[9] A. K. Azad, N. Sermsintham, S. Chandrkrachang, and W. F. Stevens: Journal of biomedical materials research. Part B, Applied biomaterials Vol. 69 (2004) p.216–22.

Google Scholar

[10] P. Zahedi, I. Rezaeian, S. -O. Ranaei-Siadat, S. -H. Jafari, and P. Supaphol: Polymers for Advanced Technologies Vol. 21 (2010) pp.77-95.

DOI: 10.1002/pat.1625

Google Scholar

[11] R. Jayakumar, M. Prabaharan, S. V Nair, and H. Tamura: Biotechnology advances, vol. 28 (2010) p.142–50.

Google Scholar

[12] I. Aranaz, M. Mengíbar, and R. Harris: Current Chemical Biology Vol. 3 (2009) p.203–230.

Google Scholar

[13] D. W. Lee, H. Lim, H. N. Chong, and W. S. Shim: The Open Biomaterials Journal, vol. 1 (2009) p.10–20.

Google Scholar

[14] X. Geng, O. -H. Kwon, and J. Jang: Biomaterials Vol. 26 (2005) p.5427–32.

Google Scholar

[15] T. J. Sill and H. a von Recum: Biomaterials Vol. 29 (2008) p.1989–(2006).

Google Scholar

[16] S. Vrieze, P. Westbroek, T. Camp, and L. Langenhove: Journal of Materials Science Vol. 42 (2007) p.8029–8034.

Google Scholar

[17] H. Chen, J. Huang, J. Yu, S. Liu, and P. Gu,: International journal of biological macromolecules Vol. 48 (2011) p.13–19.

Google Scholar

[18] D. -W. Park, Y. -H. Kim, B. S. Kim, H. -M. So, K. Won, J. -O. Lee, K. -J. Kong, and H. Chang: Journal of Nanoscience and Nanotechnology Vol. 6 (2006) p.3499–3502.

Google Scholar

[19] Q. P. Pham, U. Sharma, and A. G. Mikos: Tissue engineering Vol. 12 (2006) p.1197–211.

Google Scholar