Fabrication of ZnS Thin Film Buffer Layer in Solar Cell by Radio Frequency Sputtering Method

Article Preview

Abstract:

The present study aims to investigate the influence of Coring glass substrate temperature on the topography, deposition rate, crystal structure, optical, and electrical properties of ZnS thin films produced by magnetic radio frequency sputtering method. From plain view SEM micrographs, the pebble structure has shown in all ZnS thin films deposited at various substrate temperatures. Through higher substrate temperature, smaller ZnS grains can be obtained in the present study. From XRD analysis, ZnS thin film exhibits hexagonal Wurtzite structure. When thickness of ZnS thin film arrive 300nm, optical transmission rate can be above 85% regardless of substrate temperature and gets optical energy barrier of 3.9 eV. From electrical measurement, the variation of resistivity with temperature exhibits a linear relationship for ZnS thin film.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

386-390

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Ramanathan, e. al., Prog. Photovolt: Res. Vol. 11 (2003), p.225.

Google Scholar

[2] Y. Hagiwara, T. Nakada, A. Kunioka, Sol. Energy Mater. Sol. Cells Vol. 67 (2001), p.267.

Google Scholar

[3] T. Negami, Y. Hashimoto, S. Nishiwaki, Sol. Energy Mater. Sol. Cells Vol. 67 (2001), p.331.

Google Scholar

[4] M. fromment, D. Lincot, Electrochem. Acta Vol. 40 (1995), p.1293.

Google Scholar

[5] J. Kessler, M. Ruckh, D. Hariskos, U. Ruhle, R. Menner, H.W. Schock, Proceeding of the 23rd IEEE photovoltaic Specialists Conf., Louisville (1993), p.447.

DOI: 10.1109/pvsc.1993.347140

Google Scholar

[6] A. Ennaoui, U. Blieske, M. Ch. Lux-Steiner, Prog. Photovolt. Res. Vol. 6 (1998), p.447.

Google Scholar

[7] Q. Nguyen, U. Rau, M. Mamor, K. Orgassa, H.W. Schock J.H. Werner, Proceedings of the 17th Eur. Photovoltaic Sol. Energy Conf. Munich, (2001), p.1107.

Google Scholar

[8] S. Neve, W. Bohne, J. Klaer, R. Klenk, R. Scheer, Proceedingsof the 17th Eur. Photovoltaic Sol. Energy Conf. Munich, (2001), p.1102.

Google Scholar

[9] Landolt-Bornstein, Numerical Data and Func- tional Relationships in Science and Technology, Vol. 17, Springer, Berlin, (1984), p.61.

Google Scholar

[10] T. Nakada, Thin Solid Films, Vol. 361-362 (2000), p.346.

Google Scholar

[11] T. Nakada, A. Kunioka, Appl. Phys. Lett Vol. 74 (1999), p.444.

Google Scholar

[12] M.M. Islam , S. Ishizuka , A. Yamada, K. Sakurai, S. Niki, T. Sakurai, K. Akimoto , CIGS solar cell with MBE-grown ZnS buffer layer, Solar Energy Materials & Solar Cells, Vol. 93 (2009), p.970.

DOI: 10.1016/j.solmat.2008.11.047

Google Scholar

[13] S. Y. Kim, Appl. Optics Vol. 35 (1996), p.36703.

Google Scholar

[14] S. A. Aly, N. Z. El Sayed, Kaind M.A., Vaccum Vol. 61 (2001), p.1.

Google Scholar

[15] R. N. Bhattacharya, K. Ramanathan, LGedvilas, B. Keyes, Journal of Physics and Chemistry of Solids Vol. 66 (2005), p.1862.

Google Scholar