Temperature-Dependent Current-Voltage Characteristics in ZnO Based Schottky Diodes

Article Preview

Abstract:

Using currentvoltage (IV) measurements, the temperature-dependent current transport in Ag/Zn-polar ZnO Schottky diodes was investigated. Both the series and shunt resistances of the diode were altered at the different temperatures, which were related to the amount of free carriers and the formation of a vacuum-activated surface conduction path, respectively. The reverse biased current transport was associated with a thermally assisted tunneling field emission of carriers and the Poole-Frenkel effect, for higher and lower voltages, respectively. The average interface state density decreased with increasing temperature, which was due to a result of molecular restructuring and reordering and/or variation of the ideality factor with temperatures across the Ag/ZnO interface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

391-395

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Pearton, D. Norton, K. Ip, Y. Heo and T. Steiner: Prog. Mater. Sci. Vol. 50 (2005), p.293.

Google Scholar

[2] K. Ip, G. Thaler, H. Yang, S. Han, Y. Li, D. Norton, S. Pearton, S. Jang and F. Ren: J. Cryst. Growth Vol. 287 (2006), p.149.

DOI: 10.1016/j.jcrysgro.2005.10.059

Google Scholar

[3] Ş. Aydoğan, K. Çınar, H. Asıl, C. Coşkun and A. Türüt, J. Alloys Compd. 476, 913 (2009).

DOI: 10.1016/j.jallcom.2008.09.131

Google Scholar

[4] F. Yakuphanoglu, J. Alloys Compd. 507, 184 (2010).

Google Scholar

[5] H. Kim, A. Sohn and D. Kim: Semicond. Sci. Technol. Vol. 27 (2012), p.035010.

Google Scholar

[6] K. Maeda, H. Ikoma and T. Ischida: Appl. Phys. Lett. Vol. 62 (1993), p.2560.

Google Scholar

[7] H. Wenckstern, S. Muller, G. Biehne, H. Hochmuth, M. Lorenz and M. Grundmann: J. Electron. Mater. Vol. 39 (2009), p.559.

Google Scholar

[8] M. Lampert and P. Mark: Current Injection in Solids (Academic Press, New York 1970).

Google Scholar

[9] S. Acar, S. Karadeniz, N. Tug˘ luog˘ lu, A. Selcuk and M. Kasap: Appl. Surf. Sci. Vol. 233 (2004), p.373.

Google Scholar

[10] A. Ashery, A. Farag and R. Mahani: Microelctron. Eng. Vol. 87 (2010), p.2218.

Google Scholar

[11] E. Rhoderick and R. Williams: Metal Semiconductor Contacts (Clarendon, Oxford 1981).

Google Scholar

[12] H. Card and E. Rhoderick: J. Phys. D: Appl. Phys. Vol. 4 (1971), p.1589.

Google Scholar

[13] K. Chatterjee, S. Banerjee and D. Chakravorty: Phys. Rev. B Vol. 66 (2002), p.085421.

Google Scholar

[14] S. Demirezen, Z. Sönmez, U. Aydemir and Ş. Altındal: Curr. Appl. Phys. Vol. 12 (2012), p.266.

Google Scholar

[15] B. Akkal, Z. Benamara, A. Boudissa, N. Bouiadjra, M. Amrani, L. Bideux and B. Gruzza: Mater. Sci. Eng. B Vol. 55 (1998), p.162.

DOI: 10.1016/s0921-5107(98)00168-8

Google Scholar

[16] A. Sellai and Z. Ouennoughi: Mater. Sci. Eng. B Vol. 154-155 (2008), p.179.

Google Scholar