Temperature Dependent DC and RF Performance of n-GaN Schottky Diode: A Numerical Approach

Article Preview

Abstract:

This paper reports the temperature dependent DC and RF characteristics of n-GaN Schottky diode simulated using Atlas/Blaze developed by Silvaco. It was found that as the temperature increases from 300K to 900K the forward current decreases due to lowering of the Schottky barrier with an increase in series-resistance and ideality factor. These observations indicates that tunneling behavior dominates the current flow rather than thermionic emission. Furthermore, the breakdown voltage decreases in reverse bias and insertion loss for RF behavior increases with respect to temperature due to the increase in capacitance near diode junction.Keywords: Atlas/Blaze, Schottky barrier, series resistance, ideality factor, insertion loss.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

439-443

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Trivedi and K. Shenai. Performance evaluation of high-power wide band-gap semiconductor rectifiers. J. Appl. Phys. 85 (1999), 6889.

DOI: 10.1063/1.370208

Google Scholar

[2] K. N. Lee, X. A. Cao, C. R. Abernathy, S. J. Pearton, A. P. Zhang, F. Ren, R. Hickman, J. M. V. Hove. Effect of thermal stability of GaN epi-layer on the Schottky Diodes. Solid-State Electronics. 44 (2000), 1203.

DOI: 10.1016/s0038-1101(00)00041-1

Google Scholar

[3] T. Beechem, A. Christensen, S. Graham, and D. Green. Micro-Raman thermometry in the presence of complex stresses in GaN devices. J. Appl. Phys. 103 (2008), 124501.

DOI: 10.1063/1.2940131

Google Scholar

[4] H. Xu, S. Alur, Y. Wang, A. J. Cheng, K. Kang, C. Ahyi, J. Williams, M. Park, C. Gu, A. Hanser, T. Paskova, E. A. Preble, K. R. Evans,Y. Zhou. Temperature Diagnosis of Bulk GaN-based Schottky Diode by Raman Spectroscopy. CS MANTECH Conference, May 18th-21st, 2009, Tampa, Florida, USA.

DOI: 10.1007/s11664-010-1304-3

Google Scholar

[5] J. Osvalda, J. Kuzmika, G. Konstantinidisc, P. Lobotkaa, A. Georgakilas. Temperature dependence of GaN Schottky diodes I – V characteristics. Microelectronic Engineering. 81(2005), 181.

DOI: 10.1016/j.mee.2005.03.004

Google Scholar

[6] M. Falah, D. Linton, J. Williamson. Design of Schottky diode using Silvaco. High frequency postgraduate student colloquium, 7th IEEE (2002), 7.

DOI: 10.1109/hfpsc.2002.1088418

Google Scholar

[7] Silvaco international. Device simulation software manuals. 2(2000), 84.

Google Scholar

[8] A. R. Hefner, R. Singh, J. Lai, D. W. Berning, S. Bouche, C. Chapuy. SiC power diodes provide breakthrough performance for a wide range of applications. IEEE Transactions on Power Electronics. 16 (2), 2001, 273–280.

DOI: 10.1109/63.911152

Google Scholar

[9] M. Bhatnagar, P. K. McLarty, B. J. Baliga. Silicon carbide high voltage (400V) Schottky barrier diodes. IEEE Electron Device Letters. 13(10), 1992, 501–503.

DOI: 10.1109/55.192814

Google Scholar

[10] B.J. Baliga. Power Devices. Modern Semiconductor Device Physics. New York: John Wiley (1997).

Google Scholar

[11] J. I. Chyi, C.M. Lee, C.C. Chuo, X.A. Cao, G.T. Dang, A.P. Zhang, F. Ren, S.J. Pearton, S.N.G. Chu, R.G. Wilson. Temperature dependence of GaN high breakdown voltage diode rectifiers. Solid-State Electronics. 44(2000), 613.

DOI: 10.1016/s0038-1101(99)00183-5

Google Scholar

[12] P. Pipinys and V. Lapeika. Temperature dependence of reverse-bias leakage current in GaN Schottky diodes as a consequence of phonon-assisted tunneling. Journal of Applied Physics. 99(2006), 093709.

DOI: 10.1063/1.2199980

Google Scholar

[13] V. Benden, J. Gowar, D. A. Grant. Power Semiconductor Devices. John Wiley & son Ltd (1999).

Google Scholar

[14] T.R. Kuphaldt. Lessons In Electric Circuits, Volume II – AC, 6th edition (2007).

Google Scholar