Growth and Structural Properties of ZnO-SWCNTs Produced by Chemical Bath Deposition and Sol-Gel Methods

Article Preview

Abstract:

Two different methods were used to synthesize and fabricate zinc oxide-carbon nanotubes (ZnO-CNTs) thin films; chemical bath deposition (CBD) and sol-gel method. Single-walled carbon nanotubes (SWCNTs) were implemented in preparing the thin films. The obtained thin films were annealed in air at different temperatures levels of 200 °C, 250 °C, 300 °C and 350 °C for 30 min. Both methods successfully grew various nanostructures of ZnO-CNTs such as nanoparticles, nanobranches and nanoflakes. The synthesized nanostructures were characterized by using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The crystallite sizes were calculated between 38.54 nm and 6.13 nm. FESEM cross sectional images indicated the thin film thicknesses varied from 164.9 μm to 5.84 μm. The TEM images estimated the diameters of the SWCNTs in the range of 3.38 nm to 16.14 nm. TEM images also proved the presence of ZnO entangled between SWCNTs. A combination of ZnO and SWCNTs in the thin film proposes a simple and low cost CBD method to produce various ZnO-CNTs nanostructures with appropriate thickness. Keywords: zinc oxide; carbon nanotubes; nanostructures; thin film ABSTRAK Dua kaedah telah digunakan untuk mensintesiskan serta memfabrikasi filem nipis zink oksida-karbon nanotiub (ZnO-CNTs); kaedah pemendapan kubang kimia (CBD) dan sol-gel. Karbon-nanotiub berdinding satu (SWCNTs) telah digunakan dalam penyediaan filem nipis. Filem nipis yang diperolehi disepuh-lindap melalui udara pada tahap suhu yang berbeza dari 200 °C, 250 °C, 300 °C dan 350 °C selama 30 minit. Kedua-dua kaedah telah berjaya menumbuhkan pelbagai struktur nanoZnO-CNTs seperti nanozarah, nanodahan dan nanokepingan. Pencirian struktur nanoitu dilakukan menggunakan mikroskop elektron imbasan (FESEM), belauan sinar-X (XRD) dan mikroskop electron pancaran (TEM). Saiz kristal yang dikira adalah antara 38.54 nm dan 6.13 nm. Analisis bagi keratan rentas FESEM imej menunjukkan ketebalan filem yang pelbagai dari 164.9 μm sehingga 5.84 μm. Imej TEM menganggarkan diameter karbon nanotiub dalam julat 3.38 nm sehingga 16.14 nm. Imej TEM turut mengesahkan kewujudan ZnO yang melekat di antara CNTs. Kombinasi ZnO dan SWCNTs di dalam filem nipis mencadangkan penggunaan kaedah CBD yang ringkas dan berkos murah untuk menghasilkan pelbagai struktur ZnO-CNTs bersaiz nanodengan ketebalan yang sesuai. Kata-kata kunci: zink oksida; karbon nanotiub; struktur bersaiz nano; filem nipis

You might also be interested in these eBooks

Info:

Periodical:

Pages:

460-473

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Abdullah, H., Ariyanto, N.P., Shaari, S., Yuliarto, B. & Junaidi, S. 2009. Study of porous nanoflake ZnO for dye-sensitized solar cell application. American Journal of Engineering and Applied Sciences 2: 236-240.

DOI: 10.3844/ajeas.2009.236.240

Google Scholar

[2] Abdullah, H., Selmani, S., Norazia, M.N., Menon, P.S., Shaari, S. & Dee, C.F., 2011. ZnO: Sn deposition by sol-gel method: effect of annealing on the structural, morphology and optical properties. Sains Malaysiana 40: 245-250.

Google Scholar

[3] Akhavan, O., Azimirad, R. & Safa, S., 2011. Functionalized carbon nanotubes in ZnO thin films for photoinactivation of bacteria. Materials Chemistry and Physics 130: 598-602.

DOI: 10.1016/j.matchemphys.2011.07.030

Google Scholar

[4] Baviskar, P.K., Zhang, J.B., Gupta, V., Chand, S. & Sankapal, B.R., 2012. Nanobeads of zinc oxide with rhodamine B dye as a sensitizer for dye-sensitized solar cell application. Journal of Alloys and Compounds 510: 33-37.

DOI: 10.1016/j.jallcom.2011.08.034

Google Scholar

[5] Chang, W.C., Cheng, Y.Y., Yu, W.C., Yao, Y.C., Lee, C.H. & Ko, H.H., 2012. Enhancing performance of ZnO dye-sensitized solar cells by incorporation of multiwalled carbon nanotubes. Nanoscale Research Letters 7: 166-172.

DOI: 10.1186/1556-276x-7-166

Google Scholar

[6] Chindaduang, A., Duangkaew, P., Pratontep, S. & Tumcharern, G., 2009. Structural, optical and photovoltaic properties of ZnO-MWCNTs electrodes. Journal of Microscopy Society of Thailand 23: 115-118.

Google Scholar

[7] Chrissanthopoulos, A., Baskoutas, S., Bouropoulos, N., Dracopoulos, V., Tasis, D. & Yannopoulos, S.N., 2007. Novel ZnO nanostructures grown on carbon nanotubes by thermal evaporation. Thin Solid Films 515: 8524-8528.

DOI: 10.1016/j.tsf.2007.03.146

Google Scholar

[8] Chu, J.B., Huang, S.M., Zhang, D.W., Bian, Z.Q., Li, X.D., Sun, Z. & Yin, X.J., 2009. Nanostructured ZnO thin films by chemical bath deposition in basic aqueous ammonia solutions for photovoltaic applications. Applied Physics A 95: 849-855.

DOI: 10.1007/s00339-009-5084-7

Google Scholar

[9] Huang, C.S., Yeh, C.Y., Chang, Y.H., Hsieh, Y.M., Ku, C.Y. & Lai, Q.T., 2009. Field emission properties of CNT-ZnO composite materials. Diamond Related Material 18: 452-456.

DOI: 10.1016/j.diamond.2008.10.058

Google Scholar

[10] Ilican, S., Caglar, Y. & Caglar, M., 2008. Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method. Journal of Optoelectronics and Advanced Materials 10: 2578-2583.

DOI: 10.1016/j.tsf.2009.03.037

Google Scholar

[11] Kakiuchi, K., Hosono, E., Kimura, T., Imai, H. & Fujihara, S., 2006. Fabrication of mesoporous ZnO nanosheets from precursor templates grown in aqueous solution. Journal of Sol-Gel Science and Technology 39: 63-72.

DOI: 10.1007/s10971-006-6321-6

Google Scholar

[12] Ko, Y.H., Kim, M.S. & Yu, J.S., 2012. Structural and optical properties of ZnO nanorods by electrochemical growth using multi-walled carbon nanotube-composed seed layers. Nanoscale Research Letter 7: 13-18.

DOI: 10.1186/1556-276x-7-13

Google Scholar

[13] Kumar, P.S., Raj, A.D., Mangalaraj, D., Nataraj, D., Ponpandian, N., Li, L. & Chabrol, G., 2011. Growth of hierarchical based ZnO micro/nanostructured films and their tunable wettability behavior. Applied Surface Science 257: 6678-6686.

DOI: 10.1016/j.apsusc.2011.02.101

Google Scholar

[14] Lee, C.J. & Park, J., 2001. Growth and structure of carbon nanotubes produced by thermal chemical vapor deposition. Carbon 39: 1891-1896.

DOI: 10.1016/s0008-6223(00)00311-0

Google Scholar

[15] Liu, Z., Li, Y., Liu, C., Ya, J., Zhao, W., Lei, E., Zhao, D. & An, L., 2011 Performance of ZnO dye-sensitized solar cells with various nanostructures. Solid State Sciences 13: 1354-1359.

DOI: 10.1016/j.solidstatesciences.2011.04.005

Google Scholar

[16] Patil, S.L., Chougule, M.A., Pawar, S.G., Raut, B.T., Sen, S. & Patil, V.B., 2011. New process for synthesis of ZnO thin films: Microstructural, optical and electrical characterization. Journal of Alloys and Compounds 509: 10055-10061.

DOI: 10.1016/j.jallcom.2011.08.030

Google Scholar

[17] Peng, D., Chen, X., Wang, Y., Hu, Z., Yu, K. & Zhu, Z., 2011. Temperature dependent photoluminescence properties of needle-like ZnO nanostructures deposited on carbon nanotubes. Applied Physics A 105: 463-468.

DOI: 10.1007/s00339-011-6622-7

Google Scholar

[18] Rani, S., Suri, P., Shishodia, P.K. & Mehra, R.M., 2008. Synthesis of nanocrystalline ZnO powder via sol-gel route for dye-sensitized solar cells. Solar Energy Materials & Solar Cells 92: 1639–1645.

DOI: 10.1016/j.solmat.2008.07.015

Google Scholar

[19] Samadi, M., Shivaee, H.A., Zanetti, M., Pourjavadi, A. & Moshfegh, A., 2012. Visible light photocatalytic activity of novel MWCNT-doped ZnO electrospun nanofibers. Journal of Molecular Catalysis A: Chemical 359: 42-48.

DOI: 10.1016/j.molcata.2012.03.019

Google Scholar

[20] Shakti, N. & Gupta, P.S., 2010. Structural and optical properties of sol-gel prepared ZnO thin film. Applied Physics Research 2: 19-28.

DOI: 10.5539/apr.v2n1p19

Google Scholar

[21] Shishiyanu, S., Chow, L., Lupan, O. & Shishiyanu, T., 2006. Synthesis and characterization of functional nanostructured zinc oxide thin films. Electrochemical Society Transactions 3: 65-71.

DOI: 10.1149/1.2357098

Google Scholar

[22] Sun, S., Gao, L. & Liu, Y., 2011. Optimization of the cutting process of multi-wall carbon nanotubes for enhanced dye-sensitized solar cells. Thin Solid Films 519: 2273-2279.

DOI: 10.1016/j.tsf.2010.11.008

Google Scholar

[23] Umar, A., 2009. Growth of comb-like ZnO nanostructures for dye-sensitized solar cells application. Nanoscale Research Letter 4: 1004-1008.

DOI: 10.1007/s11671-009-9353-3

Google Scholar

[24] Wahab, R., Ansari, S.G., Kim, Y.S., Seo, H.K., Kim, G.S., Khang, G. & Shin, H.S., 2007. Low temperature solution synthesis and characterization of ZnO nano-flowers. Materials Research Bulletin 42: 1640-1648.

DOI: 10.1016/j.materresbull.2006.11.035

Google Scholar

[25] Yen, C.Y., Lin, Y.F., Liao, S.H., Weng, C.C., Huang, C.C., Hisao, Y.H., Ma, C.C., Chang, M.C., Shao, H., Tsai, M.C., Hsieh, C.K., Tsai, C.H. & Weng, F.B., 2008. Preparation and properties of a carbon nanotube-based nanocomposite photoanode for dye-sensitized solar cells. Nanotechnology 19: 375305-375313.

DOI: 10.1088/0957-4484/19/37/375305

Google Scholar

[26] Zhu, L.P., Liao, G.H., Huang, W.Y., Ma, L.L., Yang, Y., Yu, Y. & Fu, S.Y., 2009. Preparation, characterization and photocatalytic properties of ZnO-coated multi-walled carbon nanotubes. Materials Science Engineering B 163: 194-198.

DOI: 10.1016/j.mseb.2009.05.021

Google Scholar