Effects of Growth Temperature on the Structural Properties of Zinc Oxide Nanograins Deposited by RF Magnetron Sputtering

Article Preview

Abstract:

Nanograins zinc oxide (ZnO) with c-axis preferred orientation was deposited on glass substrates by RF magnetron sputtering. It was performed with a ZnO target with 99.999% purity at RF power of 200 W. The deposition was carried out in argon and oxygen ambient at the ratio flow-rates of 10 and 5 sccm respectively, with total deposition time of 1 hour. The films were grown atgrowth temperatures were specified at RT, 100, 200, 300, 400 and 500°C. The effects of the growth temperature on the ZnO structural property was investigated by x-ray diffraction (XRD). The best ZnO crystalline quality obtained at growth temperature, TG of 300°C was further characterized by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

500-504

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Xiaoli, C. Noufu, Y. Zhigang, Z. Xingwang, L. Yang, Y. Jingbi et al : J. Semicond. Vol. 31 (2010), No. 9.

Google Scholar

[2] S.S. Lin, J. I. Hong, J. H. Song, Y. Zhu, H. P. He, Z. Xu, et al : Nano Lett. 9 (2009), p.3877.

Google Scholar

[3] Y. P. Hsieh, H. Y. Chen, M. Z. Lin, S. S. Shiu, M. Hoffman, et al : Nano Lett. 9 (2009), p.1839.

Google Scholar

[4] S. Roy and S. Basu : Bull. Matter. Sci. 25(2002), pp.513-515.

Google Scholar

[5] X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen and Z. L. Wang : Adv. Mater. 21 (2009), pp.2767-2770.

Google Scholar

[6] R. Ondo-Ndong, F. Pascal-Delannoy, A. Boyer, A. Giani, A. Foucaran : Solid State Mater. Adv. Technol. 97 (2003) p.68.

DOI: 10.1016/s0921-5107(02)00406-3

Google Scholar

[7] K. Wasa, S. Hayakawa : Thin Solid Films 7(1971), p.135.

Google Scholar

[8] U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan et al : J. Appl. Phys. 98 (2005), p.041301.

Google Scholar

[9] K. Ellmer : J. Phys. D: Appl. Phys. 33 (2000).

Google Scholar

[10] A. K. Strivasta, Praveen, M. Arora, S. K. Gupta, B. R. Chakraborty, S. Chandra et al : J. Mater. Sci. Technol. 26 (2010), pp.986-990.

Google Scholar

[11] Y. Kajikawa, J. Cryst. Growth 289 (2006), p.387.

Google Scholar

[12] I. Sayago, M. Aleixandre, A. Martinez, M. J. Fernandez, J. P. Santos, J. Gutierrez et al : Synthetic Metals 148(2005), pp.37-41.

Google Scholar

[13] S. Singh, R. S. Srinivasa and S. S. Major : Thin Solid Films 515 (2007), pp.8718-8722.

Google Scholar

[14] H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng and G. Wang : Solid State Electronics 52(2008), pp.1193-1196.

Google Scholar