Morphology and Optical Studies of (1-x)ZnAl2O4xSiO2 Thin Films Prepared by Sol-Gel Method

Article Preview

Abstract:

The effect of morphological structures and optical band gap of (1-x)ZnAl2O4 xSiO2 samples with compositions of x = 0.00, 0.05, 0.10 and 0.15 were prepared by sol-gel method. Spin coating technique was used to deposited the (1-x)ZnAl2O4 xSiO2 as a thin film and to investigate the structural and optical band gap. The produced thin film samples were annealed at 450 °C for 1h. Field emission scanning electron microscope (FESEM) was used to investigate the surface morphology of the samples. The average particle size for (1-x)ZnAl2O4 xSiO2 is about 331.23 nm. The particle size are tend to increase as the composition of SiO2 increased. XRD analysis shows the formation of cubic structure phase and dominant peak has been observed with Miller Indices (311) plane. The average crystallite size, D was calculated with average size about 8 13 nm. The optical band gap was calculated for (1-x)ZnAl2O4 xSiO2 samples and it was found within range of 3.34 to 3.94 eV.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-68

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Müller-Buschbaum: J. Alloys Compd. Vol. 349 (2003), p.49.

Google Scholar

[2] D. Simeone, C. Dodane-Thiriet, D. Gosset, P. Daniel and M. Beauvy: J. Nucl. Mater. Vol. 300 (2002), p.151.

DOI: 10.1016/s0022-3115(01)00749-8

Google Scholar

[3] L. Zou, F. Li, X. Xiang, D.G. Evans and X. Duan: Chem. Mater. Vol. 18 (2006), p.5852.

Google Scholar

[4] M. Ranjbar, M. Salavati-Niasari and S.M. Hosseinpour-Mashkani: Journal of Inorganic and Organometallic Polymers and Materials Vol. 22 (2012), p.1093.

DOI: 10.1007/s10904-012-9695-7

Google Scholar

[5] H. JIANG, H.W. LIU, H. YU, F. GAO, J. -M. LIU and C.W. NAN: Int. J. Mod Phys B Vol. 19 (2005), p.2682.

Google Scholar

[6] C.A. Balanis, Antenna theory: analysis and design/Constantine A. Balanis, J. Wiley, New York, (1982).

Google Scholar

[7] K. Kumar, K. Ramamoorthy, P.M. Koinkar, R. Chandramohan and K. Sankaranarayanan: J. Nanopart. Res. Vol. 9 (2007), p.331.

Google Scholar

[8] S. Kurajica, E. Tkalcec, J. Sipusic, G. Matijasic, I. Brnardic and I. Simcic: J. Sol-Gel Sci. Technol. Vol. 46 (2008), p.152.

DOI: 10.1007/s10971-008-1707-2

Google Scholar

[9] M.A. Valenzuela, J.P. Jacobs, P. Bosch, S. Reijne, B. Zapata and H.H. Brongersma: Applied Catalysis A: General Vol. 148 (1997), p.315.

DOI: 10.1016/s0926-860x(96)00235-9

Google Scholar

[10] W. -S. Hong, L.C. De Jonghe, X. Yang and M.N. Rahaman: J. Am. Ceram. Soc. Vol. 78 (1995), p.3217.

Google Scholar

[11] N.J. van der Laag, M.D. Snel, P.C.M.M. Magusin and G. de With: J. Eur. Ceram. Soc. Vol. 24 (2004), p.2417.

Google Scholar

[12] X. Wei and D. Chen: Mater. Lett. Vol. 60 (2006), p.823.

Google Scholar

[13] M. Davis, C. Gümeci, R. Alsup, C. Korzeniewski and L.J. Hope-Weeks: Mater. Lett. Vol. 73 (2012), p.139.

Google Scholar

[14] R. Jenkins and R. Snyder, Introduction to X-ray powder diffractometry, Wiley-Interscience, (2012).

Google Scholar

[15] D. Li, F. Huang and S. Ding: Appl. Surf. Sci. Vol. 257 (2011), p.9752.

Google Scholar

[16] J. Tauc, Optical Properties of Amorphous Semiconductors, in: J. Tauc (Ed. ) Amorphous and Liquid Semiconductors, Springer US, 1974, p.159.

DOI: 10.1007/978-1-4615-8705-7_4

Google Scholar

[17] E. Jamal, D. Kumar and M.R. Anantharaman: Bull. Mater. Sci. Vol. 34 (2011), p.251.

Google Scholar