Formation and Optical Studies of Porous GaN Thin Films via UV-Assisted Electrochemical Etching Approach

Article Preview

Abstract:

This paper presents the investigation of porous gallium nitride (PGaN) thin films by ultra-violet (UV)-assisted electrochemical etching at various etching durations. The etching process was performed in potassium hydroxide aqueous solution under illumination of 150 W xenon lamp. The surface morphology and cross-section of the PGaN thin films were examined by scanning electron microscopy. Increased etching duration resulted in a more homogeneous pore distribution. Results showed that the etching duration strongly influences the layer characteristic of porous structure. Infrared (IR) and Raman studies were performed to investigate the optical properties of PGaN. IR spectroscopy revealed that the PGaN thin films exhibit distinctive IR spectra as compared to the as-grown GaN thin film. The number of interference fringes in the non-reststrahlen band is correlated to the film thickness of as-grown and PGaN thin films. The Raman measurements clearly reveal two forbidden optical phonon modes observed in all the PGaN thin films. This result indicates the crystal disordering in the films. Additionally, the findings show that the intensity of these forbidden modes becomes stronger with increasing etching duration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-50

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.P. Vajpeyi, S. Tripathy, S.J. Chua and E.A. Fitzgerald: Physica E: Low-dimensional Systems and Nanostructures 28 (2005), pp.141-149.

DOI: 10.1016/j.physe.2005.03.007

Google Scholar

[2] F. K. Yam, Z. Hassan and S.S. Ng: Thin Solid Films Vol. 515 (2007), pp.3469-3474.

DOI: 10.1016/j.tsf.2006.10.104

Google Scholar

[3] X. Li, Y.W. Kim, P.W. Bohn and I. Adesida: Appl. Phys. Lett. Vol. 80 (2002), p.980.

Google Scholar

[4] X.Y. Guo, T.L. Williamson and P.W. Bohn: Solid State Commun. Vol. 140 (2006), pp.159-162.

Google Scholar

[5] A.P. Vajpeyi, S.J. Chua, S. Tripathy and E.A. Fitzgerald: Appl. Phys. Lett. Vol. 91 (2007), pp.083110-083113.

Google Scholar

[6] T.L. Williamson, I. Adesida, P.W. Bohn and R.J. Molnar: J. Vacuum Sci. & Technology B: Microelectronics and Nanometer Vol. 20 (2002), pp.2375-2383.

Google Scholar

[7] F.K. Yam and Z. Hassan: Mater. Lett. Vol. 63 (2009), pp.724-727.

Google Scholar

[8] A. Ramizy, Z. Hassan and K. Omar: Mater. Lett. Vol. 65 (2011), pp.61-63.

Google Scholar

[9] A. Belogorokhov, Y.A. Pusep and L. Belogorokhova: J. Phys.: Condens. Matter Vol. 12 (2000), p.3897.

Google Scholar

[10] N. Dmitruk, T. Barlas, I. Dmitruk, S. Kutovyi, N. Berezovska, J. Sabataityte and I. Simkiene: Physica Status Solidi (b) Vol. 247 (2010), pp.955-961.

DOI: 10.1002/pssb.200945167

Google Scholar

[11] Y. T Hou, Z.C. Feng, J. Chen, X. Zhang, S.Y. Chua and J.Y. Lin: Solid State Commun. Vol. 115 (2000), pp.45-49.

Google Scholar

[12] A.R. Goni, H. Siegle, K. Syassen, C. Thomsen and J.M. Wagner: Physical Review B Vol. 64 (2011), p.035205.

Google Scholar

[13] A.M. Rossi, F. Giorgis, V. Ballarini and S. Borini: Physica Status Solidi (a) Vol. 202 (2005), pp.1548-1551.

DOI: 10.1002/pssa.200461179

Google Scholar

[14] A. Sarua, J. Monecke, G. Irmer, I.M. Tiginyanu, G. Gärtner and H.L. Hartnagel: J. Phys.: Condens. Matter Vol. 13 (2001), p.6687.

DOI: 10.1088/0953-8984/13/31/309

Google Scholar

[15] M. Kuball: Surface and Interface Analysis Vol. 31 (2001), pp.987-999.

Google Scholar