Micromagnetic Study on the Dynamic Susceptibility Spectra of Square-Patterned Ferromagnets

Article Preview

Abstract:

We have systematically investigated the dynamic susceptibility spectra of square-patterned ferromagnets in the mesoscopic scale from 100 nm to 500 nm by means of a micromagnetic simulation. The dynamic susceptibility spectra are obtained from the magnetization response under the applied field using Fourier transforms technique. We have observed that the frequency peak of the susceptibility spectra slightly increases as the length of the square-patterned increases. Interestingly, the frequency peak shows similar behavior compared to the frequency resonance from Kittel’s formula. We have also analyzed the magnetic energies, where the demagnetization energy is larger than the exchange energy. It can be explained that the polar interaction primarily contributes to the resonance mode of the square-patterned ferromagnets

You might also be interested in these eBooks

Info:

Periodical:

Pages:

410-413

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von. Molnàr, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294 (2001) 1488-1495.

DOI: 10.1126/science.1065389

Google Scholar

[2] D. A. Allwood, G. Xiong, M. D. Cooke, C. C. Faulkner, D. Atkinson, N. Vernier, R. P. Cowburn, Science 309 (2005) 1688-1892.

Google Scholar

[3] S. E. Russek, R. D. McMichael, M. J. Donahue, and S. Kaka, High Speed Switching and Rotational Dynamics in Small Magnetic Thin Film Devices, in: Hillebrands and K. Ounadjela(Eds. ), Topics Appl. Phys. 87, Springer, Berlin, Heidelberg (2003).

DOI: 10.1007/3-540-46097-7_4

Google Scholar

[4] I. Neudecker, G. Woltersdorf, B. Heinrich, T. Okuno. G. Gubbiotti, and C. H. Back, J. Magn. Magn. Mater., 307 (2006) 148-156.

Google Scholar

[5] N. Vukadinovic, IEEE Trans. Magn., 38 (2002) 2508-2513.

Google Scholar

[6] N. Dao, M. J. Donahue, I. Dumitru, S. L. Whittenburg, and J. C. Lodder, Nanotechnology 15 (2004) 634-638.

Google Scholar

[7] S. Jung, J. B. Ketterson, and V. Chandrasekhar, Phys. Rev. B, 66 (2002) 132405-1-132405-4.

Google Scholar

[8] F. Boust, N. Vukadinovic, and S. Labbé, J. Magn. Magn. Mater., 272-276 (2004) 708-710.

Google Scholar

[9] C. W. Bing, H. M. Gui, Z. Hao, O. Yu, and D. L. Jiang, Chin. Phys. B, 19 (2010) 087502-1-087502-7.

Google Scholar

[10] M. J. Donahue and D. G. Porter, OOMMF User's Guide, http: /math. nist. gov/oommf (2012).

Google Scholar

[11] T. L. Gilbert: IEEE Trans. Magn., 40 (2004) 3443-3449.

Google Scholar

[12] F. López-Urías, J. J. Torres-Heredia, and E. Munõz-Sandoval, J. Magn. Magn. Mater., 294 (2005) e7-e12.

Google Scholar

[13] C. Kittel, Phys. Rev. 73 (1948) 155-161.

Google Scholar

[14] A. Aharoni, J. Appl. Phys. 83 (1998) 3432-3434.

Google Scholar