[1]
K. Kobayashi, Formation of coating film on milling balls for mechanical alloying, Mater. Trans. 36 (1995) 134-137.
DOI: 10.2320/matertrans1989.36.134
Google Scholar
[2]
Agus S. Wismogroho, Wahyu B. W., Suryadi, K.A. Zaini Thosin, Nurul T. R., Sueyoshi Hidekazu, Iron aluminide coating on al by mechanical alloying, Surf. Eng. 27 (2011) 126-133.
DOI: 10.1179/026708410x12506873242949
Google Scholar
[3]
A. Torosyan, L. Takacs, Mechanochemical reaction at the interface between a metal plate and oxide powders, J. Mater. Sci. 39 (2004) 5491-5496.
DOI: 10.1023/b:jmsc.0000039272.78241.27
Google Scholar
[4]
Z. Zang, Y. He, D. Wang, W. Gao, Low-temperature processing of Fe–Al intermetallic coatings assisted by ball milling, Intermetallics 14 (2006) 75-81.
DOI: 10.1016/j.intermet.2005.04.019
Google Scholar
[5]
Z.B. Wang, J. Lu, K. Lu, Chromizing behaviors of a low carbon steel processed by means of surface mechanical attrition treatment, Acta Materialia 53 (2005) 2081-(2089).
DOI: 10.1016/j.actamat.2005.01.020
Google Scholar
[6]
W. Deqing, S. Ziyuan, Z Longjiang, A liquid aluminum corrosion resistance surface on steel substrate, Appl. Surf. Sci. 214 (2003) 304-311.
DOI: 10.1016/s0169-4332(03)00505-1
Google Scholar
[7]
L. Takacs, Self-sustaining reactions induced by ball milling , Prog. Mater. Sci. 47 (2002) 355-461.
Google Scholar
[8]
ASM International, ASM Handbook: Vol. 3: Alloy Phase Diagrams, tenth ed., ASM International, Ohio, (1992).
Google Scholar
[9]
M. Furui, T. Kawakami, S. Saji, T. Minoda, H. Esaki, H. Tanaka, H. Yoshida, Stored energy and its release behavior during recovery and recrystallization processes for aluminum alloys rolled at cryogenic temperature, J. Jap. Inst. Light Metal 52 (2002).
DOI: 10.2464/jilm.52.339
Google Scholar