Model Predictive Control with on-off Input and its Application to Attitude Control

Article Preview

Abstract:

Robust model predictive control with On-Off input of system is researched in this paper. The constraint tightening approach is adopted to ensure robustness of algorithm. By variable horizon approach, i.e. take the predictive horizon as the decision variable, the property of finite-time arrival within an arbitrary target set is guaranteed. Convergence of the algorithm is proved, and the maximum predictive horizon for the states entry to an arbitrary target set is determined. Finally, the method is applied to the attitude control of exo-atmospheric aerocraft, the simulation results show the effectiveness of the proposed method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

713-719

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.Q. Mayne, J.B. Rawling, C.V. Rao, P.O.M. Scokaert. (2000). Constrained Model Predictive Control: Stability and Optimality. Automatica, 36: 789-814.

DOI: 10.1016/s0005-1098(99)00214-9

Google Scholar

[2] Rawlings, J. B., Muske, K. R. (1993). Stability of constrained receding horizon control. IEEE Transactions on Automatic Control, AC-38(10), 1512-1516.

DOI: 10.1109/9.241565

Google Scholar

[3] Bitmead, R. R., Gevers, M., Wertz, V. (1990). Adaptive optimal control—The thinking man's GPC. Englewood Cli!s, NJ: Prentice-Hall.

DOI: 10.1002/acs.4480050507

Google Scholar

[4] Michalska, H., Mayne, D. Q. (1993). Robust receding horizon control of constrained nonlinear systems. IEEE Transactions on Automatic Control, 38, 1623-1632.

DOI: 10.1109/9.262032

Google Scholar

[5] Chisci, L., Lombardi, A., Mosca, E. (1996). Dual receding horizon control of constrained discrete-time systems. European Journal of Control, 2, 278-285.

DOI: 10.1016/s0947-3580(96)70052-3

Google Scholar

[6] Scokaert, P. O. M., Mayne, D. Q., Rawlings, J. B. (1999). Suboptimal model predictive control (feasibility implies stability). IEEE Transactions on Automatic Control, 44(3), 648-654.

DOI: 10.1109/9.751369

Google Scholar

[7] Sznaier, M., Damborg, M. J. (1987). Suboptimal control of linear systems with state and control inequality constraints, Proceedings of the 26th IEEE conference on decision and control, Los Angeles (pp.761-762).

DOI: 10.1109/cdc.1987.272491

Google Scholar

[8] Chmielewski, D., Manousiouthakis, V. (1996). On constrained infiite-time linear quadratic optimal control. Systems & Control Letters, 29, 121-129.

DOI: 10.1016/s0167-6911(96)00057-6

Google Scholar

[9] Scokaert, P. O. M., Rawlings, J. B. (1998). Constrained linear quadratic regulation. IEEE Transactions on Automatic Control, 43(8), 1163-1169.

DOI: 10.1109/9.704994

Google Scholar

[10] Alberto Bemporad , Manfred Morari , Vivek Dua , Efstratios N. Pistikopoulos, (2002). The explicit linear quadratic regulator for constrained systems. Automatica 38, 3-20.

DOI: 10.1016/s0005-1098(01)00174-1

Google Scholar

[11] PetterTondel , Tor Arne Johansen , Alberto Bemporad, (2003). An algorithm formulti-parametric quadratic programming and explicit MPC solutions. Automatica 39 , 489–497.

DOI: 10.1016/s0005-1098(02)00250-9

Google Scholar

[12] Oyvind Hegrenaes , JanTommy Gravdahl , Petter Tondel, (2005), Spacecraft attitude control using explicit model predictive control. Automatica 41, 2107–2114.

DOI: 10.1016/j.automatica.2005.06.015

Google Scholar

[13] Magni, L., Nijmeijer, H., van der Schaft, A. (1999b). A receding horizon approach to the nonlinear H problem. Automatica, submitted.

DOI: 10.1016/s0005-1098(00)00166-7

Google Scholar

[14] Kothare, M. V., Balakrishnan, V., Morari, M. (1996). Robust constrained model predictive control using linear matrix inequalities. Automatica, 32(10), 1361-1379.

DOI: 10.1016/0005-1098(96)00063-5

Google Scholar

[15] Lee, J. H., Yu, Z. (1997). Worst-case formulations of model predictive control for systems with bounded parameters. Automatica, 33(5), 763-781.

DOI: 10.1016/s0005-1098(96)00255-5

Google Scholar

[16] Richards AG, How JP. (2003). Model predictive control of vehicles maneuvers with guaranteed completion time and robust feasibility. Proceedings of American Control Conference.

DOI: 10.1109/acc.2003.1240467

Google Scholar

[17] Chisci L, Rossiter JA, Zappa G. (2001). Systems with persistent disturbances:predictive control with restrictive constraints. Automatica, 37(7), 1019-1028.

DOI: 10.1016/s0005-1098(01)00051-6

Google Scholar

[18] Arthur Richards, Jonathan P. How. (2006). Robust variable horizon model predictive control for vehicle maneuvering. International journal of robust and nonlinear control, 16, 333-351.

DOI: 10.1002/rnc.1059

Google Scholar