[1]
D.Q. Mayne, J.B. Rawling, C.V. Rao, P.O.M. Scokaert. (2000). Constrained Model Predictive Control: Stability and Optimality. Automatica, 36: 789-814.
DOI: 10.1016/s0005-1098(99)00214-9
Google Scholar
[2]
Rawlings, J. B., Muske, K. R. (1993). Stability of constrained receding horizon control. IEEE Transactions on Automatic Control, AC-38(10), 1512-1516.
DOI: 10.1109/9.241565
Google Scholar
[3]
Bitmead, R. R., Gevers, M., Wertz, V. (1990). Adaptive optimal control—The thinking man's GPC. Englewood Cli!s, NJ: Prentice-Hall.
DOI: 10.1002/acs.4480050507
Google Scholar
[4]
Michalska, H., Mayne, D. Q. (1993). Robust receding horizon control of constrained nonlinear systems. IEEE Transactions on Automatic Control, 38, 1623-1632.
DOI: 10.1109/9.262032
Google Scholar
[5]
Chisci, L., Lombardi, A., Mosca, E. (1996). Dual receding horizon control of constrained discrete-time systems. European Journal of Control, 2, 278-285.
DOI: 10.1016/s0947-3580(96)70052-3
Google Scholar
[6]
Scokaert, P. O. M., Mayne, D. Q., Rawlings, J. B. (1999). Suboptimal model predictive control (feasibility implies stability). IEEE Transactions on Automatic Control, 44(3), 648-654.
DOI: 10.1109/9.751369
Google Scholar
[7]
Sznaier, M., Damborg, M. J. (1987). Suboptimal control of linear systems with state and control inequality constraints, Proceedings of the 26th IEEE conference on decision and control, Los Angeles (pp.761-762).
DOI: 10.1109/cdc.1987.272491
Google Scholar
[8]
Chmielewski, D., Manousiouthakis, V. (1996). On constrained infiite-time linear quadratic optimal control. Systems & Control Letters, 29, 121-129.
DOI: 10.1016/s0167-6911(96)00057-6
Google Scholar
[9]
Scokaert, P. O. M., Rawlings, J. B. (1998). Constrained linear quadratic regulation. IEEE Transactions on Automatic Control, 43(8), 1163-1169.
DOI: 10.1109/9.704994
Google Scholar
[10]
Alberto Bemporad , Manfred Morari , Vivek Dua , Efstratios N. Pistikopoulos, (2002). The explicit linear quadratic regulator for constrained systems. Automatica 38, 3-20.
DOI: 10.1016/s0005-1098(01)00174-1
Google Scholar
[11]
PetterTondel , Tor Arne Johansen , Alberto Bemporad, (2003). An algorithm formulti-parametric quadratic programming and explicit MPC solutions. Automatica 39 , 489–497.
DOI: 10.1016/s0005-1098(02)00250-9
Google Scholar
[12]
Oyvind Hegrenaes , JanTommy Gravdahl , Petter Tondel, (2005), Spacecraft attitude control using explicit model predictive control. Automatica 41, 2107–2114.
DOI: 10.1016/j.automatica.2005.06.015
Google Scholar
[13]
Magni, L., Nijmeijer, H., van der Schaft, A. (1999b). A receding horizon approach to the nonlinear H problem. Automatica, submitted.
DOI: 10.1016/s0005-1098(00)00166-7
Google Scholar
[14]
Kothare, M. V., Balakrishnan, V., Morari, M. (1996). Robust constrained model predictive control using linear matrix inequalities. Automatica, 32(10), 1361-1379.
DOI: 10.1016/0005-1098(96)00063-5
Google Scholar
[15]
Lee, J. H., Yu, Z. (1997). Worst-case formulations of model predictive control for systems with bounded parameters. Automatica, 33(5), 763-781.
DOI: 10.1016/s0005-1098(96)00255-5
Google Scholar
[16]
Richards AG, How JP. (2003). Model predictive control of vehicles maneuvers with guaranteed completion time and robust feasibility. Proceedings of American Control Conference.
DOI: 10.1109/acc.2003.1240467
Google Scholar
[17]
Chisci L, Rossiter JA, Zappa G. (2001). Systems with persistent disturbances:predictive control with restrictive constraints. Automatica, 37(7), 1019-1028.
DOI: 10.1016/s0005-1098(01)00051-6
Google Scholar
[18]
Arthur Richards, Jonathan P. How. (2006). Robust variable horizon model predictive control for vehicle maneuvering. International journal of robust and nonlinear control, 16, 333-351.
DOI: 10.1002/rnc.1059
Google Scholar