First Principles Studies on Structural, Electronic and Optical Properties of SnO2

Article Preview

Abstract:

The structural, electronic, and optical properties of rutile-type SnO2 are studied by plane-wave pseudopotential density functional theory (DFT) with GGA, LDA, B3LYP and PBE0 respectively. The computing results show that the band gap getting from PBE0 and B3LYP is much more consistent with the available experimental data than that from GGA and LDA, no matter what the latter use ultra-soft pseudopotential or norm conserving pseudopotential. However, the density of state, real part and imaginary part of dielectric function calculating from every type is basically similar in qualitative analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

203-208

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Batzill M, Katsiev K, James M, et al. Gas-phase-dependent properties of SnO2 (110), (100), and (101) single-crystal surfaces: Structure, composition, and electronic properties [J]. Physical ReviewB, 2005, 72: 165414- 20.

DOI: 10.1103/physrevb.72.165414

Google Scholar

[2] M. Bataill, U. Diebold, Prog. Surf. Sci. 79(2005) 47.

Google Scholar

[3] Chun-Mei Liu, Xiang-Rong Chen, Guang-Fu Ji. First-principles investigations on structural, elastic and electronic properties[J]. Computational Materials Science. 50(2011) 1571-1577.

DOI: 10.1016/j.commatsci.2010.12.018

Google Scholar

[4] Y. He, J.F. Liu, W. Chen, et al. Phys. Rev. B 72 (2005) 212102.

Google Scholar

[5] S.R. Shieh, A. Kubo, T.S. Duffy, et al. Phys. Rev. B 73 (2006)014105.

Google Scholar

[6] J.L. Jacquemin, C. Alibert, G. Bordure, Solid State Commun. 12 (1972) 1295.

Google Scholar

[7] P. Barbara, S.F. Matar, Comput. Mater. Sci. 10 (1998) 368.

Google Scholar

[8] M. Meyer, G. Onida, A. Ponchel, L. Reining, Comput. Mater. Sci. 10 (1998) 319–324.

Google Scholar

[9] L.A. Errico, Physica B 389 (2007) 140.

Google Scholar

[10] G. Rahman, V.M. García-Suárez, S.C. Hong, Phys. Rev. B 78 (2008) 184404.

Google Scholar

[11] Y. Li, W. Fan, H. Sun, X. Cheng, P. Li, X. Zhao, J. Hao, M. Jiang, J. Phys. Chem. A 114 (2010) 1052.

Google Scholar

[12] Q.J. Liu, Z.T. Liu, L.P. Feng, Comput. Mater. Sci. 47 (2010) 1016.

Google Scholar

[13] V. Milman, B. Winkler, J.A. White, C.J. Packard, M.C. Payne, E.V. Akhmatskaya, R.H. Nobes, Int. J. Quantum Chem. 77 (2000) 895.

Google Scholar

[14] M.C. Payne, M.P. Teter, D.C. Allen, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys. 64 (1992) 1045.

Google Scholar

[15] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.

Google Scholar

[16] S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58 (1980) 1200.

Google Scholar

[17] A. Bouhemadou, Braz. J. Phys. 40 ( 2010) 52.

Google Scholar

[18] Hettenbach MS, Weiss T, Barsan N, et al. STM, LEED and Photoemission Studies of SnO2(110)Surface and SnO2 Gas Sensors[J]. International Seminar on Semiconductor Gas Sensors, Ustron(PL), 2000, 37: 1- 5.

Google Scholar

[19] Rahman G, Victor M, Garcia S. Surface- induced magnetism in C-doped SnO2 [J]. Applied Physics Letters, 2010, 96: 052508- 9.

DOI: 10.1063/1.3302468

Google Scholar

[20] P.D. Borges, L.M.R. Scolfaro, H.W.L. Alves, and E.F. da Silva Jr. Theor. Chem. Acc. 126(2010)39.

Google Scholar