Simulation on Temperature Characteristics of Solar Cell

Article Preview

Abstract:

The core of the system is a solar photovoltaic cell, a solar cell to work well not only to the battery materials, structures, is also affected by the external working conditions. Effect of temperature is an important condition of the battery efficiency. In this paper, how temperature affects battery features a comprehensive theoretical study, results showed that at a temperature of 300K, as M1.5 solar spectrum, the theoretical limit of solar cell conversion efficiency of 33%, corresponding to the optimum band gap of 1.4 eV. Provide a basis for the design and experimental battery.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

828-831

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Slunjski, I. Capan, B. Pivac: Effects of low-temperature annealing on polycrystalline silicon for solar cells, Solar Energy Materials and Solar Cells, Vol. 95 (2011), pp.559-563.

DOI: 10.1016/j.solmat.2010.09.016

Google Scholar

[2] A. Asgari, K. Khalili: Temperature dependence of InGaN/GaN multiple quantum well based high efficiency solar cell, Solar Energy Materials and Solar Cells, Vol. 95 (2011), pp.3124-3129.

DOI: 10.1016/j.solmat.2011.07.001

Google Scholar

[3] S. K. Natarajan, T. K. Mallick, M. Katz, S. Weingaertner: Numerical investigations of solar cell temperature for photovoltaic concentrator system with and without passive cooling arrangements, International Journal of Thermal Sciences, Vol. 50 (2011).

DOI: 10.1016/j.ijthermalsci.2011.06.014

Google Scholar

[4] P. Balraju, P. Suresh, Manish Kumar, M.S. Roy, G.D. Sharma: Effect of counter electrode, thickness and sintering temperature of TiO2 electrode and TBP addition in electrolyte on photovoltaic performance of dye sensitized solar cell using pyronine G (PYR) dye, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 6 (2009).

DOI: 10.1016/j.jphotochem.2009.05.014

Google Scholar

[5] A. E. Shalan, M.M. Rashad, Youhai Yu, Mónica Lira-Cantú, M.S.A. Abdel-Mottaleb: Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells, Electrochimica Acta, Vol. 89 (2013), pp.469-478.

DOI: 10.1016/j.electacta.2012.11.091

Google Scholar

[6] A. Taghinia, F. Yazdi, P. Fazel, S. N. Anousheh: Comparison of single junction GaAs and In0. 2Ga0. 8N based solar cells at various temperatures, Energy Procedia, Vol. 14 (2012), pp.919-924.

DOI: 10.1016/j.egypro.2011.12.1033

Google Scholar

[7] P. Singh, N. M. Ravindra: Temperature dependence of solar cell performance—an analysis, Solar Energy Materials and Solar Cells, Vol. 101 (2012), pp.36-45.

DOI: 10.1016/j.solmat.2012.02.019

Google Scholar

[8] Y. Qiu, O. Kunz, A. Fejfar, M. Ledinský, B. Teik Chan: On the effects of hydrogenation of thin film polycrystalline silicon: A key factor to improve heterojunction solar cells, Solar Energy Materials and Solar Cells, Vol. 122 (2014), pp.31-39.

DOI: 10.1016/j.solmat.2013.11.017

Google Scholar

[9] M. Berginc, U. Opara Krašovec, M. Jankovec: The effect of temperature on the performance of dye-sensitized solar cells based on a propyl-methyl-imidazolium iodide electrolyte, Solar Energy Materials and Solar Cells, Vol. 91 (2007), pp.821-828.

DOI: 10.1016/j.solmat.2007.02.001

Google Scholar