Friction-Compensating Feedback Linearization Control Applied to a Pneumatic Servo System

Article Preview

Abstract:

This work proposes a feedback linearization control algorithm to be applied to a pneumatic positioning system. Such algorithm aims to compensate the undesirable effects due to the highly nonlinear dynamic behavior of such type of actuator. A mathematical model of the system is presented and the proposed controller is described. Besides, an analysis is provided of the convergence properties of the closed-loop tracking errors of the system when such controller is used. The main features of the proposed controller are illustrated by means of experimental results and respective discussions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

219-224

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Smaoui M., Brun X., Thomasset D., A study on tracking position control of an electropneumatic system using backstepping design, Control. Engineering. Practice, Vol. 14, Issue 8 (2006), pp.923-933.

DOI: 10.1016/j.conengprac.2005.05.003

Google Scholar

[2] Khayati K., Bigras P, Dessaint L. -A, LuGre model-based friction compensation and positioning control for a pneumatic actuator using multi-objective output-feedback control via LMI optimization, Mechatronics, vol. 19 (2009), p.535–547.

DOI: 10.1016/j.mechatronics.2008.12.006

Google Scholar

[3] Perondi E. A., Suzuki R. M., Sobczyk M. R., Feedback Linearization Control Applied to a Pneumatic Actuator System. Proceedings of the 18th Brazilian Conference on Automatics (2010) p.2473.

Google Scholar

[4] Canudas de Wit, C., Olsson, H., Astrom, K.J., Lischinsky, P., A New Model for Control Systems with Friction, IEEE Trans. on Automatic Control, Vol. 40, n. 3 (1995), pp.419-425.

DOI: 10.1109/9.376053

Google Scholar

[5] Bone, G. Ning, S., Experimental comparison of position tracking control algorithms for pneumatic cylinder actuators, IEEE/ASME Trans. Mechatronics, Vol. 12 (2007), pp.557-561.

DOI: 10.1109/tmech.2007.905718

Google Scholar

[6] Kaitwanidvilai S., Parnichkun M., Force control in a pneumatic system using hybrid adaptive neuro-fuzzy model reference control, Mechatronics Vol. 15 Issue 1 (2005), pp.23-41.

DOI: 10.1016/j.mechatronics.2004.07.003

Google Scholar

[7] Sobczyk M. R., Perondi, E. A., Variable Structure Cascade Control of a Pneumatic Positioning System, ABCM Symposium Series in Mechatronics, Vol. 2, (2006), pp.27-34.

Google Scholar

[8] Sobczyk, M.R., Perondi, E.A. ; Cunha, M.A.B., A continuous extension of the LuGre friction model with application to the control of a pneumatic servo positioner, Proceedings of the 51st IEEE Conference on Decision and Control (2012), pp.3544-3550.

DOI: 10.1109/cdc.2012.6426406

Google Scholar

[9] Sobczyk M. R., Perondi, E. A., Cunha, M.A.B., A continuous approximation of the LuGre friction model, ABCM Symposium Series in Mechatronics, Vol. 4, (2010), pp.218-228.

Google Scholar

[10] Zeng, H., Sepehri, N. Adaptive Backstepping Control of Hydraulic Manipulators with Friction Compensation Using Lugre Model, Proceedings of the American Control Conference (2006).

DOI: 10.1109/acc.2006.1657204

Google Scholar

[11] Freidovich L., Robertsson A., Shiriaev A., Johansson R., Lugre model-based friction compensation, IEEE Trans. on Control Systems Technology, vol. 18, no. 1 (2010), p.194 –200.

DOI: 10.1109/tcst.2008.2010501

Google Scholar

[12] Khalil H. K., Nonlinear Systems, 3rd Ed., Prentice-Hall (2002).

Google Scholar