Effect of SO2 on the Performance of LSCF Cathode

Article Preview

Abstract:

Sulfur poisoning effect on the electrochemical performance and long-term durability of SOFC cathode has been investigated for La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) by Galvanic Current Interruption (GCI) technology. Cell performance was measured supplying with SO2-containing air to the cathode under a constant current density of 200 mA cm-2. At 800 °C, LSCF cathode showed low tolerance to the sulfur poisoning. SO2 tends to react with strontium in LSCF material resulting in the formation of SrSO4 in the cathode. This reaction gave rise to microstructural change in the cathode and caused gradual degradation of cell performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

41-44

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Yokokawa, N. Sakai, in: W. Vielstich, Lamm, H. A. Gasteiger (Eds. ), Handbook of Fuel cell Fundamental Technology and Application, vol. 1, John Wiley &Sons, (2003) pp.219-266.

Google Scholar

[2] S. C. Singhal, Solid Oxide Fuel Cells VI, PV 99-19, The Electrochemical Society, Pennington, JU, USA, (1999) p.39.

Google Scholar

[3] H. Yokokawa, T. Watanabe, A. Ueno, and K. Hoshino, ECS Trans., 7 (1), 133, (2007).

Google Scholar

[4] K. Sasaki, S. Adachi, K. Haga, M. Uchikawa, J. Yamamoto, A. Iyoshi, J. T. Chou, Y. Shiratori and K. Ito, ECS Trans., 7(1) 1675 (2007).

DOI: 10.1149/1.2729277

Google Scholar

[5] R.J. Ong, J.T. Dawley and P.G. Clem: submitted to Journal of Materials Research (2003).

Google Scholar

[5] S. Taniguchi, M. Kadowaki, H. Kawamura, T. Akiyama, Y. Miyake, and T. Saitoh, J. Power Sources, 55, 73, (1995).

Google Scholar

[6] J. Nielsen, A. Hagen, Y. L. Liu, Solid State Ionics, 181, 517-52, 4 (2010).

Google Scholar

[7] H. Yokokawa, N. Sakai, T. Horita, and K. Yamaji, Handbook of Fuel Cells Fundamentals Technology and Application, Vol. 5 and 6, Advances in Electrocatalyst, Materials, Diagnotics, and Durability, W. Vielstich, H. A. Gasteiger, and H. Yokokawa, Editors, John Wiley & Sons, New York, (2009).

DOI: 10.1002/9780470974001.f500037

Google Scholar

[8] H. Yokokawa, N. Sakai, T. Horita, K. Yamaji, M.E. Brito, and H. Kishimoto, J. Alloys Compd., 452, 41, (2008).

Google Scholar

[9] S. P. Jiang, W. Wang, Solid State Ionics, 176, 1185, (2005).

Google Scholar

[10] H. Nishiyama, M. Aizawa, H. Yokokawa, T. Horita, N. Sakai, M. Dokiya, J. Electrochem. Soc., 143 (7), 2332 (1996).

Google Scholar

[11] S. H. Kim, K. B. Shim, C. S. Kim, J. T. Chou, T. Oshima, Y. Shiratori, K. Ito, K. Sasaki, J. Fuel Cell Sci. Technology, 7(2), 21011 (2010).

Google Scholar

[12] Y. Xiong, K. Yamaji, T. Horita, H. Yokokawa, J. Akikusa, H. Eto, T. Inagaki, Journal of The Electrochemical Society, 156(5), B588-B592, (2009).

DOI: 10.1149/1.3090169

Google Scholar