[1]
K. Locharoenrat, H. Sano, G. Mizutani, Second harmonic spectroscopy of copper nanowire arrays of on the (110) faceted faces of NaCl crystals, J. Phys.: Conf. Ser. 100 (2008) 052050-052053.
DOI: 10.1088/1742-6596/100/5/052050
Google Scholar
[2]
T. Kitahara, A. Sugawara, H. Sano, G. Mizutani, Optical second-harmonic spectroscopy of Au nanowires, J. Appl. Phys. 95 (2004) 5002-5005.
DOI: 10.1063/1.1687991
Google Scholar
[3]
N.F. Mott, H. Jones, The Theory of the Properties of Metals and Alloys, Dover Press, New York, (2000).
Google Scholar
[4]
P. Pyykkö, Theoretical chemistry of gold, Angew. Chem. Int. Ed. 43 (2004) 4412-4456.
DOI: 10.1002/anie.200300624
Google Scholar
[5]
N.E. Christensen, D.L. Novikov, Electronic structure of materials under pressure, Int. J. Quant. Chem. 77 (2000) 880-894.
DOI: 10.1002/(sici)1097-461x(2000)77:5<880::aid-qua9>3.0.co;2-2
Google Scholar
[6]
P. Romaniello, P.L. de Boeij, The role of relativity in the optical response of gold within the time-dependent current-density-functional theory, J. Phys. Chem. 122 (2005) 164303-164310.
DOI: 10.1063/1.1884985
Google Scholar
[7]
J. Autschbach, Perspective: Relativistic effects, J. Chem. Phys. 136 (2012) 150902-150915.
Google Scholar
[8]
R. Bjornsson, M. Bühl, Electric field gradients of transition metal complexes: Basis set uncontraction and scalar relativistic effects, Chem. Phys. Lett. 559 (2013) 112-116.
DOI: 10.1016/j.cplett.2013.01.004
Google Scholar
[9]
H. Häkkinen, M. Moseler, Atom clusters of silver and gold: Symmetry breaking by relativistic effects, Comp. Mat. Sci. 35 (2006) 332-336.
DOI: 10.1016/j.commatsci.2004.08.017
Google Scholar
[10]
J. David, P. Fuentealba, A. Restrepo, Relativistic effect on the hexafluorides of group 10 metals, Chem. Phys. Lett. 457 (2008) 42-44.
DOI: 10.1016/j.cplett.2008.04.003
Google Scholar
[11]
N.E. Christensen, Relativistic solid state theory, Theor. Comp. Chem. 11 (2002) 863-918.
Google Scholar
[12]
H. Häkkinen, M. Moseler, U. Landman, Bonding in Cu, Ag, and Au clusters: Trends and surprises, Phys. Rev. Lett. 89 (2002) 33401-334411.
DOI: 10.1103/physrevlett.89.033401
Google Scholar
[13]
S. Olivier, G. Tréglia, A. Saúl, F. Willaime, Influence of surface stress in the missing row reconstruction of fcc transition metals, Surf. Sci. 600 (2006) 5131-5135.
DOI: 10.1016/j.susc.2006.08.046
Google Scholar
[14]
S. Olivier, A. Saúl, G. Tréglia, Relation between surface stress and (1×2) reconstruction for (110) fcc transition metal surfaces, Appl. Surf. Sci. 212–213 (2003) 866-871.
DOI: 10.1016/s0169-4332(03)00018-7
Google Scholar
[15]
R. Kempers, P. Ahern, A.J. Robinson, A.M. Lyons, Modelling the compressive deformation of metal micro-textured thermal interface materials using SEM geometry reconstruction, Comp. Struct. 92–93 (2012) 216-228.
DOI: 10.1016/j.compstruc.2011.11.001
Google Scholar
[16]
D.P. Woodruff, The role of reconstruction in self-asembly of alkylthiolate monolayers on coinage metal surfaces, Appl. Surf. Sci. 254 (2007) 76-81.
DOI: 10.1016/j.apsusc.2007.07.081
Google Scholar
[17]
M. Haftel, M. Rosen, Surface-embedded-atom model of the potential-induced lifting of the reconstruction of Au(100), Surf. Sci. 523 (2003) 118-124.
DOI: 10.1016/s0039-6028(02)02453-6
Google Scholar
[18]
K.L. Man, Y.J. Feng, C.T. Chan, M.S. Altman, Vibrational entropy-driven dealloying of Mo(100) and W(100) surface alloys, Surf. Sci. 601 (2007) 95-101.
DOI: 10.1016/j.susc.2007.06.027
Google Scholar
[19]
V. Mäkinen, H. Häkkinen, Density functional theory molecular dynamics study of the Au cluster, Eur. Phys. J. 66 (2012) 310-316.
Google Scholar
[20]
C.J. Heard, R.L. Johnston, Density functional global optimisation study of neutral 8-atom Cu-Ag and Cu-Au clusters, Eur. Phys. J. 67 (2013) 34-40.
DOI: 10.1140/epjd/e2012-30601-7
Google Scholar