Review Article: Mechanism of Resonant Enhancement of Gold- and Copper-Nanowires Arrays

Article Preview

Abstract:

Although second harmonic generations from gold- and copper-nanowires have been the subject of extensive studies, a complete understanding of the mechanism of the enhancement is still missing. The aim of review article is to address these issues by performing systemic studies of mechanism of the resonant enhancements between gold- and copper-nanowires in terms of surface reconstruction and relativistic effect, and implements these types of candidate for the potential applications in optical communications and optical devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-32

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Locharoenrat, H. Sano, G. Mizutani, Second harmonic spectroscopy of copper nanowire arrays of on the (110) faceted faces of NaCl crystals, J. Phys.: Conf. Ser. 100 (2008) 052050-052053.

DOI: 10.1088/1742-6596/100/5/052050

Google Scholar

[2] T. Kitahara, A. Sugawara, H. Sano, G. Mizutani, Optical second-harmonic spectroscopy of Au nanowires, J. Appl. Phys. 95 (2004) 5002-5005.

DOI: 10.1063/1.1687991

Google Scholar

[3] N.F. Mott, H. Jones, The Theory of the Properties of Metals and Alloys, Dover Press, New York, (2000).

Google Scholar

[4] P. Pyykkö, Theoretical chemistry of gold, Angew. Chem. Int. Ed. 43 (2004) 4412-4456.

DOI: 10.1002/anie.200300624

Google Scholar

[5] N.E. Christensen, D.L. Novikov, Electronic structure of materials under pressure, Int. J. Quant. Chem. 77 (2000) 880-894.

DOI: 10.1002/(sici)1097-461x(2000)77:5<880::aid-qua9>3.0.co;2-2

Google Scholar

[6] P. Romaniello, P.L. de Boeij, The role of relativity in the optical response of gold within the time-dependent current-density-functional theory, J. Phys. Chem. 122 (2005) 164303-164310.

DOI: 10.1063/1.1884985

Google Scholar

[7] J. Autschbach, Perspective: Relativistic effects, J. Chem. Phys. 136 (2012) 150902-150915.

Google Scholar

[8] R. Bjornsson, M. Bühl, Electric field gradients of transition metal complexes: Basis set uncontraction and scalar relativistic effects, Chem. Phys. Lett. 559 (2013) 112-116.

DOI: 10.1016/j.cplett.2013.01.004

Google Scholar

[9] H. Häkkinen, M. Moseler, Atom clusters of silver and gold: Symmetry breaking by relativistic effects, Comp. Mat. Sci. 35 (2006) 332-336.

DOI: 10.1016/j.commatsci.2004.08.017

Google Scholar

[10] J. David, P. Fuentealba, A. Restrepo, Relativistic effect on the hexafluorides of group 10 metals, Chem. Phys. Lett. 457 (2008) 42-44.

DOI: 10.1016/j.cplett.2008.04.003

Google Scholar

[11] N.E. Christensen, Relativistic solid state theory, Theor. Comp. Chem. 11 (2002) 863-918.

Google Scholar

[12] H. Häkkinen, M. Moseler, U. Landman, Bonding in Cu, Ag, and Au clusters: Trends and surprises, Phys. Rev. Lett. 89 (2002) 33401-334411.

DOI: 10.1103/physrevlett.89.033401

Google Scholar

[13] S. Olivier, G. Tréglia, A. Saúl, F. Willaime, Influence of surface stress in the missing row reconstruction of fcc transition metals, Surf. Sci. 600 (2006) 5131-5135.

DOI: 10.1016/j.susc.2006.08.046

Google Scholar

[14] S. Olivier, A. Saúl, G. Tréglia, Relation between surface stress and (1×2) reconstruction for (110) fcc transition metal surfaces, Appl. Surf. Sci. 212–213 (2003) 866-871.

DOI: 10.1016/s0169-4332(03)00018-7

Google Scholar

[15] R. Kempers, P. Ahern, A.J. Robinson, A.M. Lyons, Modelling the compressive deformation of metal micro-textured thermal interface materials using SEM geometry reconstruction, Comp. Struct. 92–93 (2012) 216-228.

DOI: 10.1016/j.compstruc.2011.11.001

Google Scholar

[16] D.P. Woodruff, The role of reconstruction in self-asembly of alkylthiolate monolayers on coinage metal surfaces, Appl. Surf. Sci. 254 (2007) 76-81.

DOI: 10.1016/j.apsusc.2007.07.081

Google Scholar

[17] M. Haftel, M. Rosen, Surface-embedded-atom model of the potential-induced lifting of the reconstruction of Au(100), Surf. Sci. 523 (2003) 118-124.

DOI: 10.1016/s0039-6028(02)02453-6

Google Scholar

[18] K.L. Man, Y.J. Feng, C.T. Chan, M.S. Altman, Vibrational entropy-driven dealloying of Mo(100) and W(100) surface alloys, Surf. Sci. 601 (2007) 95-101.

DOI: 10.1016/j.susc.2007.06.027

Google Scholar

[19] V. Mäkinen, H. Häkkinen, Density functional theory molecular dynamics study of the Au cluster, Eur. Phys. J. 66 (2012) 310-316.

Google Scholar

[20] C.J. Heard, R.L. Johnston, Density functional global optimisation study of neutral 8-atom Cu-Ag and Cu-Au clusters, Eur. Phys. J. 67 (2013) 34-40.

DOI: 10.1140/epjd/e2012-30601-7

Google Scholar