Laser Compensation for Ceramics Accuracy Improvement of Selective Laser Sintering

Article Preview

Abstract:

This research developed a feedback control system of laser compensation for the rapid prototyping (RP) machine using layer-wise slurry deposition and selective laser sintering (SLS). The slurry was prepared by silica power and silica sol with 60 and 40 wt.% with suitable rheological properties for 0.1 mm layer deposition. Four ceramics for comparison of the formability of fabricated ceramic green parts with/without the feedback control system of laser energy density for models were designed With this laser feedback control, batter quality ceramic green parts can be manufactured and the rapid prototyping machine with steady laser energy radiated on slurry layer was achieved. Experimental results validate the well performance of the measuring laser power and feedback control system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

12-17

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.K. Chua, K.F. Leong, C.S. Lim, Multimedia courseware for teaching of rapid prototyping systems, Rapid prototyping journal. 16 (2010) 80-89.

DOI: 10.1108/13552541011025807

Google Scholar

[2] T. Chartier, C. Chaput, F. Doreau, M. Loiseau, Stereolithography of structural complex ceramic parts, Journal of materials science. 37 (2002) 3141-3147.

DOI: 10.1023/a:1016102210277

Google Scholar

[3] D.A. Klosterman, R.P. Chartoff, N.R. Osborne, G.A. Graves, A. Lightman, H. Gyoowan T. Song, Direct fabrication of ceramics, CMCs by rapid prototyping, American ceramic society bulletin. 77 (1998) 69-74.

DOI: 10.1002/9780470294482.ch33

Google Scholar

[4] M.K. Agarwala, A Bandyopadhyay, R.V. Weeren, A. Safari, S.C. Danforth, N.A. Langrana, P.J. Whalen, FDC, rapid fabrication of structural components , American ceramic society bulletin. 75 (1996) 60-65.

Google Scholar

[5] N.K. Vail, B. Balasubramanian, J.W. Barlow, H.L. Marcus, A thermal model of polymer degradation during selective laser sintering of polymer coated ceramic powders, Rapid prototyping journal. 2 (1996) 24-40.

DOI: 10.1108/13552549610129764

Google Scholar

[6] A. Gahler, J.G. Heinrich, J. Günster, Direct laser sintering of Al2O3-SiO2 dental ceramic components by layer-wise slurry deposition , Journal of American ceramic society 89 (2006) 3076-3080.

DOI: 10.1111/j.1551-2916.2006.01217.x

Google Scholar

[7] X. Tian, D. Li, J.G. Heinrich, Rapid prototyping of porcelain products by layer-wise slurry deposition (LSD) and direct laser sintering, Rapid prototyping journal 18(2012) 362-373.

DOI: 10.1108/13552541211250364

Google Scholar

[8] F.H. Liu, Y.S. Liao, Fabrication of inner complex ceramic parts by selective laser gelling, Journal of the european ceramic society 30 (2010) 3283-3289.

DOI: 10.1016/j.jeurceramsoc.2010.08.001

Google Scholar

[9] F.H. Liu, Manufacturing porous multi-channel ceramics by laser gelling, Ceramics international 37 (2011) 2789-2794.

DOI: 10.1016/j.ceramint.2011.04.033

Google Scholar

[10] F.H. Liu, Synthesis of bioceramic scaffolds for bone tissue engineering by rapid prototyping technique, Jourenal of Sol-Gel science and technology 64 (2012) 704-710.

DOI: 10.1007/s10971-012-2905-5

Google Scholar

[11] H.C. Yen, M.L. Chiu, H.H. Tang, Slurry-based selective laser sintering of polymer-coated ceramic powders to fabricate high strength alumina parts, Journal of the european ceramic society 29 (2009) 1383-1388.

DOI: 10.1016/j.jeurceramsoc.2011.02.020

Google Scholar

[12] S. Eosoly, D. Brabazon, S. Lohfeld, L. Looney, Selective laser sintering of hydroxyapatite/poly-epsilon-caprolactone scaffolds, Acta biomaterialia 6 (2010) 2511-2517.

DOI: 10.1016/j.actbio.2009.07.018

Google Scholar