Computional Dynamics for Diffusionless Lorenz Equations with Periodic Parametric Perturbation

Article Preview

Abstract:

The dynamics of diffusionless Lorenz equations (DLE) with periodic parametric perturbation is studied through numerical and experimental investigations in this paper. A method for calculating Lyapunov exponents (LEs), Lyapunov dimension (LD) from time series is presented. Furthermore, bifurcation and some complex dynamic behaviors such as periodic, quasi-periodic motion and chaos which occurred in the system are analyzed. And an algorithm for detecting unstable periodic orbits (UPOs) is presented. Also, give some numerical simulation studies of the system in order to verify the analytic results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

651-654

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. N. Lorenz: Journal of the Atmospheric Sciences, Vol. 20 (1963), pp.130-141.

Google Scholar

[2] T. Živković, K. Rypdal: Physical Review E, Vol. 77 (2008), p.037401.

Google Scholar

[3] G. vander Schrier, L.R.M. Maas: Physica D, Vol. 141 (2000), pp.19-36.

Google Scholar

[4] Y. Xu, R. C. Gu, H. Q. Zhang, D. X. Li: International Journal of Bifurcation and Chaos, Vol. 22 (2012), p.1250088.

Google Scholar

[5] G.R. Chen, X.H. Yu: Chaos Control: Theory and Applications (Springer, Berlin, 2003).

Google Scholar

[6] K. A. Mirus, J. C. Sprott: Physical Review E, Vol. 59 (1999), pp.5313-5324.

Google Scholar

[7] K.A. Mirus, J.C. Sprott: Physics Letters A, Vol. 254 (1999), pp.275-278.

Google Scholar

[8] Zhouchao Wei, Qigui Yang: Computers & Mathematics with Applications, Vol. 58 (2009), p.1979-(1987).

Google Scholar

[9] Z.M. Wu, J.Y. Xie, Y.Y. Fang, Z.Y. Xu: Chaos Solitons & Fractals, Vol. 32 (2007), pp.104-112.

Google Scholar

[10] A. Wolf, J. Swift, H. Swinney, J. Vastano: Physica D, Vol. 16 (1985), pp.285-317.

Google Scholar

[11] Konstantinos E. Chlouverakisa, J.C. Sprottb: Physica D, Vol. 200 (2005), pp.156-164.

Google Scholar