[1]
J.R. Qiu, X. Jiang, C. Zhu, et. al, Manipulation of gold nanoparticles inside transparent materials, Angew. Chem. Int. Ed. 43 (2004) 2230-2234.
DOI: 10.1002/anie.200352380
Google Scholar
[2]
T.K. Sau, A.L. Rogach, F. Jackel, et. al, Properties and Applications of Colloidal Nonspherical Noble Metal Nanoparticles. Adv. Mater. 21 (2009) 1-21.
Google Scholar
[3]
J.J. Li, L. Zou, D. Hartono, et. al, Gold Nanoparticles Induce Oxidative Damage in Lung Fibroblasts In Vitro. Adv. Mater. 20 (2008) 138-143.
DOI: 10.1002/adma.200701853
Google Scholar
[4]
Z.H. Nie, A. Petukhova, E. Kumacheva, Properties and emerging applications of self- assembled structures made from inorganic Nanoparticles. Nature Nanotechnology. 5 (2010) 15-25.
DOI: 10.1038/nnano.2009.453
Google Scholar
[5]
W.L. Barnes., A. Dereux, T. W. Ebbesen, Surface Plasmon Subwavelength Optics. Nature. 424 (2003) 824-830.
DOI: 10.1038/nature01937
Google Scholar
[6]
H. Okamoto, K. Imura, Near-field optical imaging of enhanced electric fields and plasmon waves in metal nanostructures. Surf. Sci. 84 (2009) 199-229.
DOI: 10.1016/j.progsurf.2009.03.003
Google Scholar
[7]
Y.H. Su, Y.F. Ke, S.L. Cai, Surface Plasmon resonance of layer-by-layer gold Nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell . Science&Applications. 1 (2012) e14.
DOI: 10.1038/lsa.2012.14
Google Scholar
[8]
P.K. Jain, M.A. El-Sayed, Surface Plasmon Coupling and Its Universal Size Scaling in Metal Nanostructures of Complex Geometry: Elongated Particle Pairs and Nanosphere Trimers. J. Phys. Chem. C, 112 (2008), 4954-4960.
DOI: 10.1021/jp7120356
Google Scholar
[9]
G. Sun, J.B. Khurgin, Theory of optical emission enhancement by coupled metal nanoparticles: An analytical approach. APPLIED PHYSICS LETTERS. 98 (2011) 113116 1-3.
DOI: 10.1063/1.3565170
Google Scholar
[10]
J.J. Feng, U. Gernert, P. Hildebrandt, et. al, Induced SER-Activity in Nanostructured Ag-Silica-Au Supports via Long-Range Plasmon Coupling. Adv. Funct. Mater. 20 (2010) 1954-(1961).
DOI: 10.1002/adfm.201000302
Google Scholar
[11]
A.M. Funston, C. Novo, T.J. Davis, P. Mulvaney, Plasmon Coupling of Gold Nanorods at Short Distances and in Different Geometries. NANO LETTERS. 9 (2009) 1651-1658.
DOI: 10.1021/nl900034v
Google Scholar
[12]
Z.Y. Li, J.F. Li, Recent progress in engineering and application of surface plasmon resonance in metal nanostructures. Chinese Sci Bull. 56 (2011) 2631-2661.
DOI: 10.1360/972011-1500
Google Scholar
[13]
G.Q. Liu, Y. Li, G.T. Duan, et. al. Tunable Surface Plasmon Resonance and Strong SERS Performances of Au Opening-Nanoshell Ordered Arrays . ACS Appl. Mater. Interfaces. 4 (2012) 1−5.
DOI: 10.1021/am201455x
Google Scholar
[14]
M. Faraday, Philos. Trans. R. SOC. London, 1857, 147, 145.
Google Scholar
[15]
C.R. Paresh, Size and Shape Dependent Second Order Nonlinear Optical Properties of Nanomaterials and Their Application in Biological and Chemical Sensing Chem. Rev., 110 (2010) 5332-5365.
DOI: 10.1021/cr900335q
Google Scholar
[16]
X.C. Ye, L.H. Jin, H. Caglayan, et. al, Improved Size-Tunable Synthesis of Monodisperse Gold Nanorods through The Use of Aromatic Additives. ACS Nano. 6 (2012) 2804–2817.
DOI: 10.1021/nn300315j
Google Scholar
[17]
C.J. MurPhy, A.M. Gole, J.W. Stone, et. al. Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging . Acc. Chem. Res. 41 (2008) 1721-1730.
DOI: 10.1021/ar800035u
Google Scholar
[18]
J. Stone, S. Jackson, D. Wright, Biological applications of gold Nanorods. John Wiley&Sons, Inc. 3 (2011) 100-109.
Google Scholar
[19]
S. Jung, J. Nam, S. Hwang, Theragnostic pH-Sensitive Gold Nanoparticles for the Selective Surface Enhanced Raman Scattering and Photothermal Cancer Therapy. Anal. Chem. 85 (2013) 7674-7681.
DOI: 10.1021/ac401390m
Google Scholar
[20]
Y.S. Chen, W. Frey, S. Kim, Silica-Coated Gold Nanorods as Photoacoustic Signal Nanoamplifiers. Nano Lett. 11 (2011) 348-354.
DOI: 10.1021/nl1042006
Google Scholar
[21]
J. Chen, D. Wang, J. Xi, et. al. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett. 7 (2007) 1318-1322.
DOI: 10.1021/nl070345g
Google Scholar
[22]
E.R. Encina, E.A. Coronado, Plasmon Coupling in Silver Nanosphere Pairs J. Phys. Chem.C. 114 (2010) 3918-3923.
DOI: 10.1021/jp912096v
Google Scholar
[23]
B. Tang, J.F. Wang, S.P. Xu, Application of anisotropic silver nanoparticles: Multifunctionalization of wool fabric. Journal of Colloid and Interface Science. 356 (2011) 513-518.
DOI: 10.1016/j.jcis.2011.01.054
Google Scholar
[24]
S. Pal, Y.K. Tak, J.M. Song, Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Escherichia coliGram-Negative Bacterium. Appl. Environ. Microbiol. 73 (2007) 1712-1720.
DOI: 10.1128/aem.02218-06
Google Scholar
[25]
Y.N. Xia, W.Y. Li, C.M. Cobley, et. al, Gold Nanocages: From Synthesis to Theranostic Applications. ACCOUNTS OF CHEMICAL RESEARCH. 44 (2011) 914 –924.
DOI: 10.1021/ar200061q
Google Scholar
[26]
J.L. Li, L. Wang, X.Y. Liu, In vitro cancer cell imaging and therapy using transferrin- conjugated Gold nanoparticles. Cancer Letters. 274 (2009) 319-326.
DOI: 10.1016/j.canlet.2008.09.024
Google Scholar
[27]
M. De, P.S. Ghosh., V.M. Rotello, Applications of Nanoparticles In Biology. Adv. Mater. 20 (2008) 1-17.
Google Scholar
[28]
K.A. Homan, M. Souza, R. Truby, Silver Nanoplate Contrast Agents for in Vivo Molecular Photoacoustic Imaging. ACS Nano 6 (2012) 645-650.
DOI: 10.1021/nn204100n
Google Scholar
[29]
H.C. Li, C.X. Kan, Z.G. Yi, et. al, Synthesis of One Dimensional Gold Nanostructures. Journal of Nanomaterials. 2010 (2010), pp: 8.
Google Scholar
[30]
C.X. Kan, J.J. Zhu, X.G. Zhu, Silver nanostructures with well-controlled shapes: synthesis, characterization and growth mechanisms. J. Phys. D: Appl. Phys. 41 (2008) 155304.
DOI: 10.1088/0022-3727/41/15/155304
Google Scholar
[31]
Z.L. Wang, Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B, 104 (2000) 1153-1175.
DOI: 10.1021/jp993593c
Google Scholar
[32]
Y. Wang, Y.Q. Zheng, Z.C. Huang, et. al, Synthesis of Ag Nanocubes 18–32 nm in Edge Length: The Effects of Polyol on Reduction Kinetics, Size Control, and Reproducibility. J. Am. Chem. Soc. 135 (2013) 1941–(1951).
DOI: 10.1021/ja311503q
Google Scholar
[33]
Z.L. Wang, R.P. Gao, B. Nikoobakht, and M A El-Sayed, Surface reconstruction of the unstable {110} surface in gold nanorods. J. Phys. Chem. B. 104 (2000) 5417–5420.
DOI: 10.1021/jp000800w
Google Scholar